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SIMPLICIAL APPROXIMATION OF ANTIPODAL MAPS

BY

W. KULPA (KATOWICE)

In this note we shall prove that each continuous antipodal map f: P—R"
defined on a symmetric polyhedron P = R" can be approximated by a sim-
plicial antipodal map g: P — R" such that 0 e R" is a regular value of the map g.

The result is related to the following question of Nirenberg [4]:

Let f: CLX>R", f(BdX)c R"\{0}, be a continuous antipodal map,
where X is a symmetric, open and bounded subset of R". Is it possible to find
for each ¢ > 0 an antipodal map

fi: CIX >R

of class C! such that the point 0 is a regular value of the map f, and
I f()—f,(x)l| <& for each xeClX?

The purpose of the question was to obtain a simple proof, based on the
degree theory, of the Borsuk antipodal theorem. The Nirenberg question was
answered in the affirmative by Ivanov [3].

The main result presented here has a simple proof and, as shown, it
simplifies the proof of the Borsuk theorem.

We shall use the following terminology: A set X — R" is said to be
symmetric if xe X implies —x e X, and a map f: X — R™ is said to be antipodal
provided that f(—x) = —f(x) for each xe X. The symbols Cl X, Int X, Bd X
mean the closure, the interior and the boundary of the set X.

1. Preliminaries. Let us recall some facts on simplicial complexes which we
shall apply in this note. For details and proofs the reader is referred to [2] and
[1]. ‘

A set {ay, ..., @} = R" of k+ 1 points is said to be affinely independent if it
is not contained in any (k — 1)-flat. This is equivalent to the fact that the points
a,—a,, ..., a,—a, are linearly independent.

Assume that the set {a,, ..., a,} = R" is affinely independent. The convex
hull )

k k
[ag, ..., a]:={xeR" x= ) X4a,0< 4, ) 4 =1}
i=0 i=0
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is called the k-simplex with vertices a,, ..., a;. If
{ai09 [EES) ai.l} c {ao, ceey ak}’ j S k,

then the simplex [ay,, ..., a;] is said to be a j-face of [a,, ..., ]
Define a map L: R*>R" by

k
ull’ .-4., )‘k):= a0+ Z Ai(ai_ao).
i=1

Observe that
[ao, ..., a] = L(4)),

where
k
Ah:= {(Al’ ey lk)ERk: Os ll" Z Ai S 1}.
i=1

If n =k, then the Jacobian det L'(x) is equal to
det(al _ao, coey a"_ao) # 0.

A simplicial complex is a finite family K of simplexes in R" such that:
(@) If seK, then so does every face of s.
(b) If s, 0 € K, then s N o is either empty or a face common to both s and .
The barycenter of a k-simplex s = [a,, ..., a,] = R" is the point

k

k+1i=oa"'

The barycentric subdivision KV’ of a complex K is the set of all simplexes
of the form

b(s):=

[b(so), -- -, b(s)],

where-s, =5, =...cs; is a strictly increasing sequence of simplexes of K.
Define the (r+ 1)-st barycentric subdivision of a complex K by

Kr+th. - [K"’]“’.

A set Pc R" is said to be a polyhedron whenever P = |K| for some
complex K, where ’

IK|:= | {s: seK}.
For any vertex aeK the set
st(a, K):= K\{seK: a¢s}
is called the star of a. Put
Ist(a, K)|:= |[K\|J {seK: a¢s}.
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4

The set |st(a, K)| is an open subset of the compact space K and the following
facts hold:

IK?| = K|,
diam[a,, ..., @] = max{lla;,—a,|: i, j = k},
mesh K® < (L) mesh K,
n+1

where
IK|lc R* and meshK:=max{diams: seK}.

Recall that if f: U—R", U open in R", is a map of class C!, then a point
x e U is said to be critical whenever the Jacobian det f'(x) = 0. A point aeR" is
called a regular value of the map f if the set f~!(a) does not contain any
critical point.

Each map ¢: V(K)—R" defined on the set of all vertices of a complex
K induces the so-called simplicial map |p|:|K|—R" defined as follows:

k
lol(x):= -Z’o’l‘ v(a),

where
k

k
x= )Y haeseK, 0<4i, Y A=
i=0 i=

The map |¢| is continuous and, moreover, |¢| is of class C® on the open set

= |K|\S(K), where S(K) is the union of all k-simplexes, k < n. Extend the
definition of simplicial map. If X = R" is a compact set, then a continuous map
f: X->R" is said to be simplicial whenever there exists a simplicial map
F: P—>R", where P o X is a polyhedron, such that F|X = f.

A point ae R" is said to be a regular value of a simplicial map f: X - R" if
there exists an open set U c R", U c X, such that

@) a¢f(X\U), ie, f" (@< U,

(i) f1U is of class C!,

(iii) a is a regular value of the map f|U of class C.

For example, for a given complex K let Z(K) be the union of all images
|| (s) of simplexes s e K such that |¢|(s) is contained in an (n— 1)-flat. It is clear
that |¢| [S(K)] = Z(K). Thus the map |¢| | U, U = |K\S(K), is of class C* and
each point ae R"\Z(K) is a regular value of the simplicial map.

2. An approximation theorem. We shall precede the main result of our
note by the following

LEMMA. For each continuous antipodal map f: X — R™, where X R" is

a compact symmetric set, there exists a continuous antipodal map F: R" - R™
such that F|X ={.
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<

Proof. Without loss of generality we may assume that 0 e X because, for
every antipodal map, 0e X implies f (0) = 0. Define for each k=1,...,n

R/ :={(x;,..., x,)€R" x, 20 and x; =0 for i > k},
R, :={xeR" —xeR}}, R,:=R{ UR;.

We have R, c R, c...c R, =R". Now, we shall construct the map F in
n steps.

(k = 1) Let f,: R{ = R™ be a continuous extension of the map f|X N R{ .
Then, let us extend the map f, onto R; defining

fi(x):= —f(—x) for xeRy.
(k+1) Assume that for k < n the map f,: R,— R™ is defined. Since
HIX R, =fIXNR,,
the map
g:=fivfIXoR;: RUXNR > R"

is continuous. According to the Tietze-Urysohn theorem the map g is
extendable to a continuous map f;.,: R, — R™ Extend the map f;,, onto
R, ; by the formula

Jer1(0):= —fis1(=x)  for xeRy,,.

Put F:=f. This completes the proof.

THEOREM (APPROXIMATION THEOREM). Let f: Bd X - R" be a continuous
antipodal map defined on a compact symmetric subset X — R". Then for each
¢ > 0 there exists a simplicial antipodal map f,: P— R", defined on a symmetric
polyhedron P, X < P < R", such that

(@) 0 is a regular value of the map f,

(b) 1 f(x)—f.(x)|l <& for each xeBd X.

Proof. Fix a number M > 0 and let ¢;eR", i = 1, ..., n, be points of R"

defined as follows:
e,:=(M,0,...,0), e,:=(0,M,0,...,0), ..., :=(0,...,0, M).

Let K be a simplicial complex consisting of n-simplexes of the form
[0, te,, ..., +e,]

and their k-faces, k < n. The polyhedron |K| is the smallest convex set which
contains the set {e,, ..., e,, —e,, ..., —e,}. Assume that the number M > 0 is
such that X < |K|. According to the previous lemma the map f: Bd X — R" has
a continuous antipodal extension F: |K|—R".

Now, fix an ¢> 0. In view of the fact that the map F is uniformly
continuous there exists an r-th barycentric subdivision K of the complex
K such that
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(1) mesh K@ < % and diamF(s) < —3% for each se K®.

Let A:= V(K") be the set of all vertices of the complex K. Consider the
following subsets of A:

A,:={ae A: aeBd|st(0, K")|} L {0},
A,:={be A\A,: beBd|st(a, K?)|, acA,},
Aj:=A\(4,V A4,).

The sets A, A,, A,, A, are finite and symmetric. Since the map F is antipodal,
so, in particular, the set E:= A, U F(A,) is also symmetric. Let Z be the union
of all k-simplexes, k < n, with vertices belonging to the set E. The set Z is
a compact nowhere dense symmetric subset of R". Hence there exist points

@) c,e B0, )\Z,

where

B(0, 8):= {xeR™ |x| <8}, B(O,J) clst0, K|, 0<d< ;—6.
Now, let us define an antipodal map ¢: 4 — R" in the following way: For
each a =(a,, ..., a,)e A, U A, put
k:= max{i < n: a; # 0},

and then define

r

a if aeA,,
_ a+c; if aeA, and q, >0,
(3) oa):=<a—c; if aeA, and q, <0,

F(a)+c; if aeA,; and q, >0,

Let f,: P> R", P:=|K")| = |K|, be a simplicial map induced by the map
o, ie.,

@ f:= ¥ dofa),

where

A =1.

j Jj
X = z Aiaies= [ao, ceey aj]EK('), Osli, z
i=0 =0

We verify that
|F(x)—f.(x)| <e¢ for each xeP.
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Indeed, first observe that
5) ¢(a) = F(a)+n(a),
where |n(a)|| < ¢/6 for each ae A.
From (1)5) we get, for xe[a,, ..., a,]e K?,
IF()—£,@)] < IF(x)—@(ao)ll + ll@(ag) £, (%)l
< [F(x)=F(ao)ll + In(ap)ll +max {[l¢(ao) — p(a)l: i < j}

< §+§+max {IIF(ag)—F(a)ll: i <j}+In(ao)l

+max {[In(a)l: i <j} < 5-—2— <e.

Since the map ¢ is antipodal, so is the map f,. The proof will be completed
if we show that O is a regular value of the map f,. First, observe that f, is of
class C* on the open set

= [st(0, K?)| v [IK”\S(K™)].

Next, consider a point xef, 1(0). If x = 0, then x is not a critical point of the
map f,|U because f|st(0, K”)| is the identity map. If x # 0 and f,(x) = 0, then
in view of the choice of the point ce R® we get xelInts for some n-simplex
s = [ay, ..., a,]€ K® such that the set {¢(a,), ..., ¢(a,)} is affinely indepen-
dent. Hence detf,(x) # 0. The proof that 0 is a regular value is com-
pleted.

3. On a proof of the Borsuk antipodal theorem. In this part we would like
to explain a role which the approximation theorem plays in the proof of the
Borsuk theorem suggested by Nirenberg [4].

The classical degree function is an integer-value function deg(f, X, a)
defined for all continuous maps f: X — R", where X is a compact subset of R"
and a¢f(Bd X), satisfying the following conditions:

(a) If deg(f, X, a) # 0, then aelntf(X).
(b) If f: X—>R" is a map of class C! and the point

aef(X)\f(Bd X)
is a regular value, then
deg(f, X, @) = Y {sgndetf'(x): xef~'(a)}.
() If Hc X is a closed subset and a¢f(H u Bd X), then
deg(f, X, a) = deg(f, CI(X\H), a).
(d) For each continuous map f: X—R" and a point a¢f(BdX)
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there exists an ¢ > 0 such that, for every continuous map g: X »>R", if
|f(x)—g(x)]| <eé& for each xe Bd X, then

deg(f, X, a) = deg(g, X, a).

From (a)(d) we get further properties:

() F: Xx[0, 1]—>R" is a continuous map such that for each te[0, 1]
and xeBd X we have a # F(x, t), then

deg(f09 Xa a) = deg(fl’ X’ a)s

where f,(x) = F(x, 0) and f,(x) = F(x, 1).
(f) For any continuous maps f,g: X > R" and a point a¢f(Bd X),

fIBd X = g|Bd X implies deg(f, X, a) = deg(g, X, a).

(g If f: X—R" is a map of class C! and a point aeR"\ f(Bd X) is
a regular value of f, then deg(f, X, a) is an odd integer if and only if the
cardinality of f~!(a) is an. odd number.

Notice that if f: X — R" is a simplicial map and a point a€ f(X)\ f(Bd X)
is a regular value of f, then there exists a closed subset H — X such that
a¢f(H). Then the map

g = fICI(X\H)

is of class C! and the point a is a regular value of g. The property (c) yields
deg(f, X, a) = deg(g, CI(X\H), a).

But from the above and thg property (g) we infer that: _

@) If f: X>R" is a simplicial map and a point aeR"\ f(Bd X) is
a regular value of f, then deg(f, X, a) is an odd integer if and only if the
cardinality of f~!(a) is an odd number.

THE BORSUK THEOREM (see [4]). If f: BdX > R"\{0} is a continuous
antipodal map and X < R" is a compact symmetric set such that O X, then, for
each continuous extension f*: X —» R" of the map f, deg(f*, X, 0) is an odd
integer.

Proof. According to the property (f) and the Lemma we may assume that
f* is an antipodal map. The property (d) and the approximation theorem
imply that there exists a simplicial antipodal map f,: X — R" such that 0 is
a regular value of f, and, by (e),

deg(f,, X, 0) = deg(f*, X, 0).

To see that deg(f,, X, 0) is an odd integer it suffices to observe, in view of the
property (g), that the cardinality of the set f, !(0) is an odd number. But this is
obvious because, since f, is an antipodal map and 0 is a regular value of f, so
f71(0) is a finite symmetric set which contains 0. It is clear that such a set has
an odd number of elements.
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THE BORSUK—ULAM THEOREM. If g: Bd X - R™ = R", n > m, is a continuous
map defined on the boundary of a compact symmetric set X < R" such that 0e X,
then, for some point xeBd X, g(x) = g(—x).

Proof. Suppose that, for each xe Bd X, g(x) # g(—x). Define

f(x):=g(x)—g(—x).

The map f: Bd X - R™\{0} is antipodal. Hence, for an arbitrary continuous
antipodal extension f*: X —»R™ < R", deg(f™*, X, 0) is an odd integer (see the
Lemma, property (f) and the Borsuk theorem). But from the property (a) we
infer that

OelIntgnf*(X) < IntgnR™ = G,

a contradiction.
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