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QUASI-PRIME AND d-PRIME IDEALS
IN COMMUTATIVE DIFFERENTIAL RINGS

BY

ANDRZEJ NOWICKI (TORUN)

The paper contains some properties of d-prime ideals and of quasi-
prime ideals of commutative differential rings. It is shown, among others,
that any quasi-prime ideal is d-prime and that in a noetherian case these
two notions coincide. Moreover, an example of a non-noetherian d-ring
is given where there are d-prime d-ideals which are not quasi-prime.

1. Preliminaries. Throughout this paper all rings are commutative
with identity. For any ring R and for any ideal A of R, r(A) will denote
the radical of A. The term d-ring will refer to a ring R together with a speci-
fied derivation d: R — R.

Let R be a d-ring. An ideal 4 in R is called a d-ideal if d(4) = A. For
an arbitrary subset T of R denote by [T'] the smallest d-ideal containing T.
A d-ideal P in R is called quasi-prime if there is a multiplicative subset
S of R such that P is maximal among d-ideals disjoint from S. Some of the
properties of the quasi-prime ideals are given in [2]-[4]. A proper d-ideal
P of R is called d-prime if for d-ideals A and B of R the relation AB c P
implies either A = P or B = P (see [1], [6], [7]).

2. Quasi-prime ideals and d-prime d-ideals.
ProPOSITION 2.1. Every quasi-prime ideal 18 a d-prime d-ideal.

Proof. Let P be a quasi-prime ideal in a d-ring R and let 8 be a multi-
plicative subset of R such that P is maximal among d-ideals in R disjoint
from S. We assume that there are two d-ideals A and B in R such that
ABc P, A¢ P, and B ¢ P. Choose a € A\NP, be B\P and consider
d-ideals A, = P+[a] and B, = P+[b]. Since 4,2 P and B,z P,
we have A,N8 #O and B,NS #O. Let seA,nS and teB,NnS.
Then

sted,B,c P+[a][b]c P+AB<cP+P =P, ie., stePNS.
This contradicts the fact that P is disjoint from §.
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THEOREM 2.1. Let R be a noetherian d-ring and let P be a d-ideal in R.
Then the following properties are equivalent:

(1) P is a quasi-prime ideal;

(2) P is a d-prime d-ideal.

Proof. (1) = (2) follows from Proposition 2.1.

(2) = (1). We prove first that if P is a d-prime d-ideal in a noetherian
d-ring R, then P is a primary ideal. Let @y € P. There is a natura 1 number
% such that (P : 2*) is a d-ideal (see [5] or [6]). Since zy € P, we have #*y € P,
i.e., y e(P:a%), and so [y] = (P:2%). Since (P:[y]) is a d-ideal and
#*e (P :[y]), we obtain [2*] < (P: [y]), i.e., [#*][y] < P. Thus [2*] < P
or [y] c P and, therefore, 2* € P or y € P, i.e., P is primary.

Now, let 8 = R\r(P). Clearly, S is a multiplicative subset of B and
P ig disjoint from 8. Let P, be a d-ideal of B maximal among d-ideals con-
taining P and disjoint from 8. Then P, is a quasi-prime ideal in R. Since
P c P, c r(P), we have r(P,) = r(P). Let #» be a natural number such
that »(P)* =« P. Then »(P,)" < r(P)" < P and, consequently, P} c P.
Since P i8 a d-prime d-ideal, we get P, < P, and thus P = P,, ie., P is
a quasi-prime ideal.

In what follows we give an example of a non-noetherian d-ring R
having d-prime d-ideals which are not quasi-prime. To do this we need
some properties of generalized Newton symbols.

3. Generalized Newton symbols. If n,, ..., %, are non-negative integers,
then we set
(ny+ ... +n,)!
yloom!

(Myy oeey M) =
Since
(Mg eeey M) = Mgy Np+ oo +5,) (Bgy Bg+ ooo +1) oo (My_yy B,
(Byy ..., m,) 18 always a natural number.

We have the following
LeMMA 3.1. If R is a d-ring and @,, ..., %, € R, then

EP@yn) = Y (e t)d (@) ... A% (w)
‘1+...+‘ik-ﬂ

for any matural number n.
We assume now that p is a prime natural number and that N is the
set of all natural numbers. We define two mappings

0,0 N>Nvu{0} and 1,: N->NU{0}
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by the formulas
7,(n) =k if » = p*m, where pim, 1,(n) = o,(n!).

Clearly, if n,,n, € N, then o,(n,n,) = g,(n,)+0,(n,). The mapping
7, has the following properties:

(a) 7,(p™) = (p—1)"'(p™—1) for any m e N.

(b)) X1 +#mand 0<a<p, 0<b<p, then

7, (ap' +bp™) = ar (p") + b7, (p™).

Using (a) and (b) we get
LEMMA 3.2. Let neN. If

k
n = Za,-p‘, where 0 < a; <p for t =0,1,...,
i=0
then

7,(n) = (p—1)"'(n—s,(n)), where s,(n) = ag+a,+ ... +a.
As an immediate consequence of Lemma 3.2 we get the following
two corollaries:

CoroLLARY 3.1. Let ay,a,,...,a; be integers such that 0 < a; <P
Jor i =0,1,..., k and let

4 =(p* ...,p5 " 0"y 1, 1),

Sk Gx—1 a1 %o
Then p is not a divisor of A.
COROLLARY 3.2. Let 8,, ..., 8, be natural numbers such that 8, < ... < 8,

and let a,, ..., a, be integers such that the following conditions hold:
(1) |a;l < p% for ¢ =1,...,k.
(2) a4+ ... +a, = 0.
(3) There is an i, such that a; 0.
Then (p+ay, ..., p%+a;) =0 (mod p).

4. An example of a d-prime d-ideal which is not quasi-prime. Let
T =2,[X,, X,,..., ¥, Y, ...]

be a ring of polynomials of variables X,, X,,..., ¥, X,,... over the
field Z,, and let :

4 = (Xf,xg’ ceey Yf; Yg,---)

be an ideal in T generated by squares of all variables. Moreover, let
R=T/Aand let ,= X, + A and y,= Y,+ A for all » € N. The ring
R is a local ring with a maximal ideal

M = (@1, @ay eevy Y1y Ygy ---)-

2 — Colloquium Mathematicum 47.2
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For an arbitrary element r € R, if r € M, then 2 = 0, and if r ¢ M, then
r? = 1. The set of all elements from R taking the form

By oo By Yy oo Yips
where 1<4,<...<4, and 1<j,<...<j;, i8 a basis of the vector
space M over Z,.

Let d: R — R be a derivation of R such that d(»,) = #,,, and d(y,)
= Y, for every » € N. Therefore, R is a d-ring and M is a d-ideal.

Under these assumptions the following two lemmas hold.

LEMMA 4.1. Every quasi-prime ideal of R is equal to M.

Proof. Let P be a quasi-prime ideal in R and § a multiplicative
subset of R such that P is maximal among d-ideals in R disjoint from 8.
If P S M, then there is an element s of R such that se M N8, and so
0 = s ¢ M n8. This contradicts the fact that 0 ¢ 8.

LEMMA 4.2. Let i,,...,1%, be natural numbers such that i, < ... <%
and let s be a natural number such that i, < 2°. Moreover, let

no=2%t1 4 . 428tk g =281, =28 g,

Then in the basic representation of elemenis a"(m; ... ®; ) a coefficient of
By oee Ty 18 equal to 1.

Proof. From Lemma 3.1 it follows that

(4.1) dn (w;l see m‘k) = (jl’ ceey jk)a}il_ul s w,ka.
J1+.Hig=n

In particular, putting j, = 2%, ..., j, = 2°*¥, we get in the right-hand
side of (4.1) a summand

(2841, ..., 2"”‘)w,l oo @y
By Corollary 3.1 we have
(28, ...,2°"%) =1 (mod 2).

In the right-hand side of (4.1) the term @, ..., appears k! times
and we have there a summand

k°

(O’ (tl) —_ il’ ooy O'(tk) — ik) w,“l) ces ﬁv(‘k)
for any permutation o of the set {t,, ..., %.}. Put
4, = (G(tl) — 1y eeey U(tk)—'ik)'
We shall show that if ¢ is not the identity permutation, then A,

= 0 (mod 2). To this aim put the numbers ¢(t,) —iy, ..., 6(f) —4% in an
increasing order. Then

4, = (tl_"(il); ceey tk"‘"(":k)):
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where 7 is a non-identity permutation of {i,, ..., 7.}. Put

@y =t —7(4); eoey @ = G —7(1).
Then
A, = (2**' +a,, ..., 2" 1 q,).

The integers a,,...,a, fulfil all the assumptions of Corollary 3.2
for p = 2. Therefore A, = 0 (mod 2), which completes the proof.

THEOREM 4.1. If P is an ideal in R generated by the elements ¥y, Y, ...,
then P i3 a d-prime d-ideal in R.

Proof. Take Q = (x,, #,, ...). Clearly, Q is a d-ideal and P+Q = M.
Assume that A and B are d-ideals in R such that A « M, Bc M, AB c P,
and A¢ P. Let aeA and a ¢ P. Since A « M, there exist elements
peP and u ¢ P such that a = p+u.

Let

(4'2) u = Z ail.__.‘swil ) wia

be a basic representation of u, where coefficients a; .4, are in Z,. Since
u ¢ P, some coefficient is equal to 1. Choose the shortest term from the
set of all products o, ... ;, appearing in (4.2) with coefficients equal
to 1 and denote it by @, ..., . Denote by I the set of all indices ¢ such that
x; appears essentially in (4.1) and put J = I\{s,, ..., t,}. Clearly, I and J

are finite. Then
«[Ja =[]
jeJ iel

Hw, # 0.

and, of course,

Consequently,
a”mj = (p+u)”wj = p,+na;,-, where p, € P.
jeJ jeJ iel

Thus we have shown that the d-ideal A contains an element v of the
form

=P+ ...5,, Where peP, i<...<%.

Take now any element b from B. Since B =« M, we have

(4.3) b=p,+ 2 Biv...sgByy o+ By

J1<e..<dg

where p, e P and B; ; €Z,.
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Let {jy,..-yj;} be the set of all indices of #’s in (4.3) and assume
that j, < ... <}j,. Moreover, let s be a natural number such that
2° > max(j;, ;) and put

mo=20F 28R g =281t = 28R,
Since A is a d-ideal and v € A, we have d"(v) € A. However,
a*(v) =d"(p+a; ...x) = pa+a"(m ... 2 ), where p, e P.

It follows from Lemma 4.2 that in a basic representation of the element
d*(@; ..., ) the coefficient 8f @, ..., is equal to 1, so in this representa-
tion of d"(v)d there is a summand

(4.4) 2 Bir.dg®iy o v By, @y oo By

jl<"'<ja

Since d"(v)b € P, all coefficients g, , of the summand (4.4) are equal
to 0 and by (4.3) we get b = p, € P. Thus B < P, and hence P is d-prime.

Theorem 4.1 and Lemma 4.1 imply that P = (y,, ¥,, ...) i8 a d-prime
d-ideal in R and that it is not quasi-prime in R.
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