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Introduction. Let X be a locally compact Hausdorff space with
a non-Archimedean metric topology and a martingale structure induced by
a family of finite partitions and an associated Borel measure. Examples include:
local fields, the ring of integers in a local field, Vilenkin groups, the boundary of
a regular g-martingale, and the boundary of a tree induced by a transient
random walk on the tree (see [4], [8]-[10], [12]). By a Hilbert transform we
mean a “singular integral” operator: f— f which is bounded on I?, 1 < p < o;
on BMO; and on the Hardy space H'; and which characterizes H! in the sense
that f is in H' if and only if f and f are in I! and

s ~ W+ 17

H! is defined to be a space of functions whose martingale maximal function is
in L' (see Section 3 below). Such operators have been studied for homogeneous
isotropic martingales in a variety of settings (see [2], [6], [8], [11]). Certain
examples for the non-homogeneous isotropic case were implicitly considered in
[4] and [3].

In this paper* we consider the non-homogeneous, non-isotropic case. This
situation arises naturally in the study of random walks on a non-homogeneous
tree. (See [9] for the general case and [13] for a special case.) For simplicity of
the exposition we assume that X is compact. The extension to the non-compact
case is both obvious and easy.

1. Martingale structure on X. For k =0, 1, 2, ... and x€ X there is a unique
set I3, called the interval of level k, that contains x, xe I3 < X; I{ = X for all x.
For k fixed there are a finite number of intervals of level k that form a partition
of X, the intervals of level k + 1 are subsets of intervals of level k. The collection
of all intervals forms a base for a compact topology on X. We assume that
there is a Borel measure v on X, v(X) = 1. Foreachinterval I} _,,k=1,2,3,...,
there is a partition of it: {I§'}, i=1,..., q, ¢ =2, q = q(x, k), x; = x,(x, k).

* The second-named author was supported in part by NSF grant DMS 87001263.
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Think of the {x;} as representatives of the members of the partition of I§_, into
intervals of level k. Furthermore, it is convenient to think of the {x;} as fixed.
A metric is defined on X by

A(x, y) = inf {v(I): yel;i};

(X, 4) is a non-Archimedean metric space.
For xeX and k=1, 2, 3, ..., let

p; = pi(x, k) = v(I&)/v(I§- ).

We assume that p;(x, k) = é > 0 for all x, k, and i, where ¢ is a fixed positive
constant. Note that

Y pix,k)=1 for all x and k.

Let &, be the o-algebra generated by the intervals of level k. We say that
f={f} is a martingale if f, is # -measurable for all k and E[f,|#,] = f, when
n = k. This last property reduces to

JAE, mav(E) = [ &, k)dv(E)
I I

if n> k. This, in turn, is the same as requiring that

g
ﬂx’ k_l) = ‘Zlhpif(xi’ k)

for each (x, k). We often write f(x, k) for f,(x).
ExaMPLES. 1. Suppose g is an integrable function. Then

(1 /v(If))Ij; gdv

is a martingale and we say that feI! and that f=g.

2. If u is a complex Borel measure, then f(x, k) = u(I3)/v(IF) is a martingale
and we say that f= pu. '

3. Suppose h is a distribution, that is, a finitely additive functional on the
space of test functions: the linear span of characteristic functions of intervals.
Then

fx, K = hix )/v(a)

is a martingale and we say that f= h. In fact, the class of martingales is in

one-to-one correspondence with the space of distributions: the martingale

property of f(-, k) implies that the linearization of h(xlx) = v(I{)f(x, k) is
k

a distribution.
The martingale difference sequence of f= {f,} is {df(x, k)}, where

df(x, k) = f(x, k)—f(x, k—1).



NON-HOMOGENEOUS MARTINGALES 113

(By convention, f(x, —1) =0.) Since f is a martingale,
Zl’idf(xi» k) = 0.

Let

d fIx) = (df(x,, k),...,df(x,, k)
and p = p(x, k) = (p,,...,p,). These are vectors in C“.
NoTATION. If u, veCY, let

u#v=(uvy,...,u0,).

Let U = U? denote the subspace of C? of vectors whose components add to
zero.
If f is a martingale, then

p(x, k) # d,f(x)e Ut

Conversely, if {f(*, k)} is a sequence of functions and f{-, k) is constant on
intervals of level k for each k, and

p(x, k) # d, fix)e U*=»  for all x and k,
then {f(-, k)} is a martingale.

2. Construction of singular integral transforms on X. We construct
a variant of the singular integral transforms introduced by Janson [8]. For
each (x,k) we select a matrix M = M(x,k) such that M = (m;;) is
a (g x g)-matrix that sends U into U, and has Euclidean norm 1. If f = {f(", k)}
is a martingale, we define another martingale f = {f(-, k)} as follows: f{x, 0) = 0.
For k> 1 let

p # d flx) = M(p # d,f(x));
that is,

d]’(xi’ k) =

q
j=

mi2ddf(x,, k).
1 Di

Then set

k
ﬂx, k) = Z d,,j'(X).

Since p # d,fe U and f(-, k) is constant on intervals of level k, we see that
{f(-, k)} is a martingale.

From [8], Section 3, we see that f—f is bounded on I?, 1 < p < o; on
BMO; and on H'. Janson’s proof uses p; = 1/q(x, k), but the extension to the
non-isotropic case is trivial. Observe that

min{pi(xa k)}\S l/q(x, k)’

8 — Colloquium Mathematicum 58.1
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so q(x, k) < 1/6 for all (x, k); so the g’s are bounded.

In the following sections we show that if the matrices M are properly
chosen, then f—f characterizes H!. For now we show how to realize f—f by
a “singular” kernel. We have

df(x;, k) = i mijz—jf(xj, k)— (Z m;; )ﬂx k—1).
j=1 Pi

ConveNnTION. If fis a distribution and {f(, k)} is its associated martingale,
we write

[fodv = f(o)

and note that

[fo = lim [f(x, Ke()dv(x),

k—oc

and that if ¢ is & ,-measurable, then

[fodv = [fix, ne(x)dv(x).

If f is an integrable function, then |[fepdv can be taken literally.
Let S,(x, &) = Si1(x, §)—S;2(x, &), where

_ q p 1 1 q
Skl(xi’ é) - jgl pl V(Ixj) X’xj(é) V(I',:‘) j; mi.ix’g_y(é)a

1 1
Skz(xi’ €)= Z ljp_,) V(I 1) I —1(6) (I"‘)(Z muP_,)X 1(6)

We see that d,f(x) = [fS,(x;, )dv, S;(x, *) is supported on I;_,, and
Sulx, &) < 2/8v(T).

It follows that

k
flx, k)= | ;os,,(x, )fdv.

In the special case p;(x, k) = 1/q(x, k) and q(x, k) odd for all (x, k), M can
be chosen so that its row sums are zero and its diagonal terms are zero. In this
case S,, =0 and S,,(x;, k) is supported on I{_;\I§', and the kernel takes on
a more classical appearance.

3. Characterization of the Hardy space H!. We have assumed that p,(x, k)
> 0 for 6 a fixed positive constant, and therefore the {q(x, k)} are bounded
from above. We have also assumed that the matrices M(x, k) map U?*¥ into
itself. We now make the key assumption that M(x, k) does not have any real
eigenvectors in U%*¥, We also assume that there are only a finite number of
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different matrices M for each g. We make the temporary assumption that
q 2 3. In Section 4 we will prove the following

PROPOSITION. There exists an sy, 0 <s, <1, such that if s> s,, then
(f(x, k), flx, k)| is a submartingale. That is,

(1) (e, k=1, . k=D < 3l B, T

for all xeX, k=1, 2, 3, ...
At this point, standard machinery takes over. If
sup [|fix, k)jdv(x) = 4 < o0,
k

we say that fis [!-bounded and that its I*-bound is A. If fand fare in LI}, then
they are both I'-bounded,

sup [f(x, kldv(x) = lIfl, and sup [|fix, kidv(x) = |Ifl,.
k k

Since |(f(x, k), fx, k)’ is a submartingale, we can construct a majorant g in I
of (fix, k), fix, k) with |igll, ~ Ifll;+ Ifll,. If we set

f*x)= sn:p Uf(x, k),

it follows that f*e ! and ||fl, ~ Ifl,+ Ifll,. (See [11, [8], [12] for specific
instances of this argument.) Recall the definition of H' for martingales:

DerINITION. H! = {f: f*e '}, fllg: = I/*1l,-

See [9] where the theory of such spaces in the setting of non-homogeneous
martingales is worked out.
As we pointed out in Section 2, if fe H', then

feH'<L' and |fl, < Iflm <CIf*ly =Clflg.
Consequently,

THEOREM. A function f is in H' if and only if f and f are in L. Furthermore

0 s ~ WA+ 070

In Section 5 we show how to get the extension to the case q(x, k) > 2.

4. Proof of the Main Lemma. We want to show that there is an s,
0 < s < 1, such that |(f(-, k), f(, k))|" is a submartingale; which is to say that (1)
is satisfied for an s independent of xeX and k=1, 2, 3, ...

Let

gy =fix, k=1), a,=flx,k—1), a=(a,,a,);
vor = df(x;, k), vy = dfix;, k),
Vg = (Vo1»---sV0g)s U1 =(y4,...,0y), and  v; = (vy;, vy).
We have p # v, = M(p # v,), p # voe U, [M| = 1, M sends U into U, } p; = 1,
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and p; = 6. Note that
(fix, k=1), flx, k—1)) = ¥ p,(flx, k—1)+dflx;, k), fix, k—1)+dflx;, k),

which is to say that

@ a= Y platv).

i=1

In terms of this notation we want to show that

q
(3) lal* < Z pila+v [
i=1
Since there are only a finite number of different matrices M, the Proposition
will follow from the following result which is a generalization of a result of
Janson [8], which was a generalization of a result of the authors [6], [1].

LEMMA. Suppose M is a (q x q)-matrix that maps U into U, M has no real
eigenvectors in U, and M has Euclidean norm 1. Suppose p = (py,...,p,) is
a probability vector and p; >8>0, i=1, 2, 3, ..., q¢; a=(a, a,)eC?
p # v, = M(p # v,). Then there is a constant s, = so(M, J) that depends only on
M and 5, 0 < sy < 1, such that (3) is satisfied whenever s > s,.

Proof. Since (2) is satisfied, (3) is valid for all s > 1, so we may assume
that 0 < s < 1. Since (3) is trivial if a =0, we may assume that a # 0. Let
uo=p # v, and u, = p # v,. We recall that u,, u, eU. Fix a probability
vector p.

We evaluate the right-hand side of (3)

4) ZPJ“"‘U.J’ = Z_Pil(ao"‘”on a; +v,)I
= Zpi(laol2 +2Ra, Voi + |vo;'|2 + |al|2 + 291511’1.' + lvlilz)’/z

= Z Pi(|a|2 + Z 2Rav;+ |v.i|2)’12
i J

2R(Y. a,v;)+ v 42 ¥
=|alszpi{l+ . Ialz }

sZ‘R(Za,vﬁ) S,
=|a|’ZPi 1+ ! +50

2 |af? 2 af?

356 ()}
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S
- |a|‘{1 +5 T il al?

+%(s—2) Z‘: p.-(m Z.‘, dfvﬁﬂalz)z * O((%)s)}

where the “big oh” is uniform in s and p. Furthermore,

©) oY ap) <XplXapl =L Zk a0 ;i@
! J U J i j
= P @) pi aw;) < X plaf ol
ij ij

= Zlajlzzpilvkilz = |af? Zpilv.ilz-
j ik i

Let
K, = {(a, v)€C?*%|al =1, uyeU, u, = Mu,, ZPaIv..-Iz - 1}.

Since p; > 6, we have |v;| < 1/\/5 for all i, j; so K,, is compact. Equation (5)
reduces to

(6) Yo(RY app)> <1 if (a, v)eK,,.
i j
If there is equality in (6), then we have
Y Lh(RYap) =1.
i j

If (7) is satisfied, then the derivation of (6) shows that ) av;; is real for all i and
J
that av,; = Aaw;; for all i, j, k, where 1 is non-negative. Then
apy = Aap; = Alap,, for all i, j, k.

At least one of the products is non-zero (else by (5) the left-hand side of (7) is

zero and this contradicts (7)). Thus 4 = 1, and so av,; = a,v;; for all i, j, k and,

consequently, we have aqou, = a,u,. We know that a, # 0; for if not, then

a, # 0, and so u, = 0, and hence u, = 0. Consequently, v, and v, are both zero,

which implies that the left-hand side of (7) is zero, and that is not possible.
Now from ayu, = a,u, and a, # 0 we see that

Muy = uy = (a,/ao)u,.
Thus u, is an eigenvector of M, and therefore so is uy/a,. However,

ug/ao = (3.a;a;)up/ag =Y au;eR.
i i

That is, up/a, is a real eigenvector of M, and that is a contradiction.
Therefore we never have equality in (6).
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Let
a(p) = sup {Zpi(ﬂiZdjvﬁ)zz (a, vo)eK,p} <1

We claim that a(p) < 1, for if a(p) = 1, then, since K,, is compact, there is
a pair (a, vo)€ K, , for which (7) is satisfied, which leads to a contradiction, as
above.

We now claim that a = sup{a(p): p; = 6} < 1. Let

K, = {(a, v,, p): (a, vo)eKlp, p; = 6}.

K, is a compact subset of C?¢*2 Since K,, is compact, there is a pair
(a, v9)e K, , for which

;(‘R;djvﬁ)z = a(p).

If « = 1, there is a triple (a, vy, p)e K, such that (7) is satisfied and this is, once
again, a contradiction. Thus a < 1. By homogeneity,

® ZP;-(SR ; 5;”15)2 < afaf? Zpi|v.i|2

for all a, v, and p, for an a satisfying 0 <o < 1.
Substituting (8) into (4) we have

Eplaof > lar1+5(+a6-2) o nar+o (32) )
f i

lal
Consequently, there is an ¢ > 0 (independent of s and p) for which

) lal* < Zp,-la+v.,.|' if |vy) < élal and s > a.
Now that we have found a and ¢ let
K,, ={@a, vo): uoeU, u, = Muo,zi:pila+v.:| =1, |vo| = ¢lal}.
We see that
la| = I;Pi(a‘*'”.i)l < ;pila'l'v.il =1,
and so
zi:Pi|v.t| < |0|+;Pi|a+”.i| <2.

Consequently, |v;| <2/ for all i. It follows that K,, is compact. Let

Bp) = sup {Ial: (a, vo)EKZp}'
It is clear that B(p) < 1. We claim that B(p) < 1. If not, there is a pair
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(a, vo)eK,, for which
(10) la| = Zpil(a0+00i’ a,+vy;)l.
Since

la| = Zpi(a0+00i’ a;+vy),
equality in (10) implies that there are 4, 4; > 0, for which p,(a;+v;) = A,a; for
all i and j. That is,

pvj; = (li—pi)aj'

If we set A=(4,,...,4), we have u;=a;(A—p). We claim that a, # 0.
Otherwise u, =0, and so v, =0, which contradicts |vy| = elal # 0. Thus

uy/a, = A—p. Notice that A—p # 0, else u, = 0, which leads to a contradiction.
We have shown that A—p is real and non-zero,

M(A—p) = M(up/ay) = u,/ay = (a,/ag)(A—p),

and so A—p is a real eigenvector of M, a contradiction.

Thus B(p) < 1, |al < B(p) for all (a, vy)e K,

Now we remove the dependence on p. Since K, is compact there is a pair
(@, vo)eK,, such that |a| = B(p). Let

K, = {(a, vy, p): (a, Uo)GKz,,,Pi > d}.
We argue as above. Let
B = sup{B(p): p; > 6}.

Note that f < 1. Since K, is compact, if # =1 there is a triple (a, vy, p)eK,
such that

la] = Z‘;Pda"‘”.il-
But this is not possible, and so f§ < 1. Thus,
(11) lal* < (ﬂzi:Pi|a+U.i|)’ < ;pila','v.ilsa
provided

lvgl = €lal and s> 1/1+logp/logd).
The second inequality in (11) follows from the fact that the form ) plc|* is

1]
concave if 0 < s < 1 so that the maximum of B p;lc|* occurs at an extreme

i
point; that is, a point where all the ¢, = 0 except for one term.
It follows from (8) and (11) that

lalf <Y pila+v,ff if s> s, = max{«, 1/(1+logp/logd)}.
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This completes the proof of the Lemma.
Thus the Theorem has been proved provided q > 3.

5. Extension to the case g > 2. There is a simple approach that works if
some of the g(x, k) are equal to 2. It is tased on an idea introduced in [2] to
deal with dyadic martingales. Let

Ef={E/(, b}, Eftx, k) =/lx, 2k).

Then Efis a martingale with respect to & ,,. We wili say that a martingale with
respect to {#,} is a martingale while a martingale with respect to {#,,} is an

even martingale.
Let

Mf(x) = sup {If(§, K): SeIi-4}.

The function Mf is called the non-tangential maximal function of f. From [9],
Lemma 2, f*e L' if and only if

MfeL’ and |f*|, ~ [Mfll,.
That is, ||fllg: ~ |Mf]l,- Observe that for the even martingale Ef we have
M(Ef)(x) = sup {|f(S, 2k)|: Eel5;-2}.
We claim that:
fis I}-bounded if and only if Ef is I[!-bounded.
fel! if and only if EfelL.
feH! if and only if Efe H!.

Furthermore their “norms” in these spaces are equivalent. The direction f=>Ef
is trivial in each case. For Ef=f

L'-bounded.
flx, 2k+1) =Y pfix;, 2k+2), p; =pi(x, 2k+2),

SO
If(x, 2k+1)| < Y pilfix;, 2k+2)|.

Thus
| IRE2k+1)dv(&) = v(I3k+ DIf(x, 2k +1)|

B+
< ZP:V(HH DI, 2k +2)|

=Y [ Ifi€, 2k+2ldv(d)

= xi
LA PP

= [ A€ 2k+2)dv(&).

2k +1
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L'. We note that fe L! if and only if fis I!-bounded and some subsequence
{f(, k,)} is Cauchy in L'; and if fe L’, then ||f]|, is equal to the [!-bound of the
martingale f.

H'.
[fix, 2k+ DI < 3 pil fix;, 2k +2)]

< max {|f(x;, 2k+2)I} < M(Ef)(x).

Thus, f* < M(Ef)(x), and so |fllg < ClIEf]l .

Since the partitions in {#,} always have at ieast two members, the
partitions in {# ,,} always have at least four. Thus we may construct a Hilbert
transform that characterizes H' for even martingales: Ef—Ef.

If fe H!, then fel!, and so

Efel! and EfeH!'c Il

Conversely, if fand Ef are in L}, then Ef and Ef are I!-bounded. Furthermore,
I(Ef, Ef)l* is subharmonic for some s, 0 < s < 1. Then, as above,

EfeH' and |Eflly ~ IEfll, + EAl,.

Given an even martingale there is a unique way to fill in the odd-numbered
steps so that one has an (original) martingale. For Ef call the extension f
(Observe that the notation “Ef” is consistent.) The transformation f—f can be
realized by a kernel as before. The values of dy . f(x) and dy . ,f(x) are
determined by matrices acting on d,.,Ef(x). Since

Ef Vg ~ Iflgss  WEfly~ A, and  EfI, ~ U0,
we have ||fllg ~ I+ 171,

This completes the proof. However, if the number of places where
q(x, k) = 2 is rather sparse, then the argument is rather clumsy. If one wishes,
the correction can be applied locally. For example, let {I3;,} be the partition
for {I3} and let {I5¢,,} be the pdrtitions for the {I3;.,}. In case one of the
numbers {q(x, 2k), {q(x;, 2k + 1)} is equal to two proceed as in Section 5 (above)
at I3, otherwise proceed as in Section 4.

6. Extensions.

6.1. An F. and M. Riesz theorem. 1t is a standard fact that a (regular)
martingale is a finite Borel measure if and only if it is I!-bounded. In our proof
we did not use the fact that fand f'were in L! to get the conclusion that f was in
H!, we only used that they were L!'-bounded. Thus we have established an
F. and M. Riesz theorem:

THEOREM. If f and f are both finite Borel measures, then they are both
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absolutely continuous.

6.2. Systems of conjugate operators. It is occasionally convenient to work
with a system of conjugate operators instead of just one conjugate operator.
Fix a positive integer t. For each (x, k) we have a system of matrices
{M,,...,M,} which have no real eigenvector in common in U%*¥, and are
otherwise as described in Section 4 or 5. Let {T},...,T;} be the system of
operators induced by these matrices as in Section 2. Then fis in H' if and only
if fe! and Tf;eL!, j=1, 2, ..., t. The proofs above go through with only
trivial changes. See [8] and [5] for the homogeneous isotropic case.

6.3. Harmonic functions. Suppose T is a non-homogeneous tree and P is
a transition operator on Tassociated with a transient nearest neighbor random
walk. (We assume that P is regular in the sense of [9].) Let X be the boundary
of Tand endow X with the hitting measure induced by the random walk. This
gives X a martingale structure in the sense of Section 1. The vertices of the tree
are in one-to-one correspondence with the family of intervals {I7}. The value of
k is the geodesic distance of the vertex from the starting place of the random
walk.

The main idea of [9] is that there is a one-to-one correspondence between
martingales on X and P-harmonic functions on T. (A function g on T is
P-harmonic if Pg(u) = g(u) for all vertices ue T) In fact, F is P-harmonic on T if
and only if it is the Poisson integral of a martingale on X, where the Poisson
integral is defined in [9].

For F a P-harmonic function on 7, and f its associated martingale on X,
we let F' be the P-harmonic function on T associated with f, the Hilbert
transform of f. F is, in a natural sense, a conjugate harmonic function to F.
Using the ideas of this paper together with the constructions of [9] it can be
shown that F is the Poisson integral of an fe H' if and only if F and F are
L!-bounded. This is worked out in the setting of g-martingales (which is the
homogeneous isotropic case) in [7] using the constructions of [13].
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