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Introduction. In this note we will consider the relationship between
the regularity of the boundary of a domain and the regularity of its Pois-
son kernel. Because the Poisson kernel is the normal derivative of Green’s
function, one can expect the Poisson kernel to be differentiable of order one
less than the differentiability of the boundary. For instance, it is well known
that if the boundary is C¥+1:2, for some integer k¥ > 0 and 0 < a < 1, then
the Poisson kernel is C**® (as a function of the variable in the boundary).
We will focus on the converse, which says roughly that if the Poisson kernel
is C*¥, then the boundary is C*¥*1*, We will also consider the case in
which the Poisson kernel is merely continuous.

The converse problem is a free boundary problem because we are ask-
ing for the regularity of the boundary given the regularity of the Oth and
first derivative of a harmonic function (Green’s function). In order to prove
the converse we will make use of fundamental free boundary estimates due
to Caffarelli [3]. (See also [1).) The case of higher regularity (k > 2) was
proved by Kinderlehrer and Nirenberg [11]. But in the case where data yield
boundary regularity of order less than two, such as when the Poisson kernel
is merely C?, for some a < 1, no proof of the sharp order of regularity
appears in the literature (*). This is because it is necessary to use frac-
tional derivatives and second differences, techniques associated to Professor
Zygmund and the Zygmund class A, (see [20, p. 263, Theorem 5.1]).

Thus we will supply some Schauder-type boundary estimates which, to-
gether with Caffarelli’s deep result, complete the picture of the simple re-
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(}) However, the techniques of Lieberman [14, 15] also yield a proof. Moreover,
Kinderlehrer, Nirenberg, and Spruck [12] have proved real analyticity for a related non-
linear problem assuming solutions are a priori C. Finally, related homogeneous linear
problems are treated by Pipher [17).
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lationship between C* regularity of the Poisson kernel and boundary reg-
ularity. The only novelty in the C* case is that we make inhomogeneous
Schauder-type estimates in function spaces involving some blow-up at the
boundary. With the help of a Rellich formula, we will also prove the sharp
endpoint estimate when the Poisson kernel is C°. Finally, we will discuss
open questions that are part of the program of understanding free bound-
aries as clearly as we understand minimal surfaces.

2. Notations and main results. Consider a domain above the graph
of a Lipschitz function. Let ¢ : R® — R satisfy the Lipschitz condition
le(z) — p(2')| < Alz — 2’| for all z,z’' € R*. Set 2 = {(z9,2) E R XR":
zo > ¢(z)}. For each a > 0, define

A(e) = {f € C(R™) : || flla = sup r™%inf sup |f(y) - P(y)| < oo}

B(z,r)

z€ER"®
r>0

where the infimum is over all polynomials of degree < a. This is the same
(modulo polynomials) as the class A, of [19]. In particular, A(1) is the
Zygmund class. There is a harmonic function u (unique up to a constant
multiple) such that u > 0in 2, v € C(£2) and u = 0 on 312 (see [8, 9]). This
function should be thought of as Green’s function with pole at oo. It follows
from Dahlberg’s theorem [4] and related results that Vu has nontangential
limits a.e. on 82. Define h(Q) = —Ng - Vu(Q), where Ng is the outer
unit normal. (Thus A(Q) is defined almost everywhere and is nonnegative.)
We will refer to h(Q) as the Poisson kernel. Indeed, the ordinary Poisson
kernel with finite pole is a multiple of this function by a nonzero factor that
is smoother than h. Moreover, the Poisson kernel on a bounded domain
whose boundary overlaps with 32 on some fixed ball B, will agree up to a
similar smoother nonzero factor at least on B, /; N 3§2. Thus the regularity
of h is the same as the regularity of the ordinary Poisson kernel.

THEOREM 1. Suppose that ¢ is a Lipschitz function. Then for all o > 0,
¢ € A(a + 1) if and only if logh(p(z),z) € A(a).

Notice that locally the statement logh € A(a) is equivalent to h €
A(a) and b >-0. Also note that one could also express this statement
without using graph coordinates by saying that log h(Q) agrees with the
restriction to 2 of a A(a) function in R**1. Furthermore, because we
are assuming that ¢ is Lipschitz, Theorem 1 only has interest for distance
less than 1. Indeed, logh(y(z),z) grows at most like Clog|z| as z — oo,
and the A(a) and A(a + 1) estimates for h and ¢ on large balls (radius
> 1) are automatically satisfied. The forward implication: ¢ € A(a +
1) implies A € A(a) is well known. It follows from the standard layer
potential technique [6]. The proof of the reverse implication will involve
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second differences even when a < 1 because 1 + a > 1.

Let fp denote the average value of f on B. The space of vanishing mean
oscillation is

VMO = {f € IXR"): m sup — [ 1f(s) - (el dy=0}.

zf<nr- B(z,)

VMO is the closure in BMO of the subspace of uniformly continuous func-
tions in BMO.

THEOREM 2. Suppose that ¢ is a Lipschitz function. If, in addition,
Ve is uniformly continuous, then logh(p(z),z) € VMO. Conversely, if
h(¢(z), z) is uniformly continuous, then Vo € VMO.

The first statement is due to Jerison and Kenig [10).
Let us recall Caffarelli’s result [3, part I].

THEOREM 3. Let ¢ be a Lipschitz function. Suppose that a > 0 and that
log h(¢(z),z) € A(a). Then there ezists € > 0 such that Vi € A(¢).

Our goal is to improve the conclusion to Vy € A(a).

In the limiting case Caffarelli’s method also yields a result. Recall that
the little-o Zygmund class is

A. = {f € A1) : limsupinfr~! sup |f(y)— P(y)| = 0}
=0z P Bzr)
where the infimum is taken over polynomials of degree < 1.

THEOREM 4 (proved by the method of [3]). Let ¢ be a Lipschitz function.
If log h(p(z), z) is uniformly continuous, then ¢ € A,.

(It is well known that Vo € VMO implies ¢ € A,.)

3. Linear estimates. Suppose that 0 < s < 1. Let a;;(Y), Y €
R; x R", be coefficients in A*(s), the restriction to R; X R™ of functions in
A(s) of R**1. Suppose that for some A > 0, 3°7'._o a;;(Y)&:; > A|£[? for
all ¢ € R**1, Suppose that by, by,...,b, € A(s) and bo(Y) > co > 0. Let I
denote the unit cube -1 < y; <1, =0,1,...,n.

Let -1<a-6<0,6 > 0. Define
B} (a) = {f € C(Ry xR™) : |f(20,2) - f(2p,2")|
< C(237° + |g|* %)z - 2'|°).

For E C R™**1, B} (a, E) denotes the restriction to EN (R4 X R") of B} (a).
Similarly A(a, E) denotes the restriction to £ N ({0} x R®) of A(a).
The main result of this section is
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THEOREM A. Suppose 357 ._; a:;(Y)w;;(Y) = R(Y), Y € Ry xR", and

E_’;:o b;(0,y)w;(0,y) = f(y), y € R, where w; and w;; are the correspond-

ing derivatives of w. Then
||V2w||3;"(a—1,1) < C("R"B;f(a-mn + "Vw”B;“(.-l.zI)
+ 1wl g3 (s-1,21) + lwllacs,2n + I fllacs,2n)-

Furthermore, the constant C depends only on A, co, ||aij|| 4+(s) and ||b;l| a¢s)»
i,j=0,1,...,n.

Before we prove Theorem A we will explain the significance of B (a) by
ProPOSITION 1. If -1 < a—6 < 0, then || F(0, -)|| g(a+1) < C||VF||B:(a).
Proof. Let z,t € R*. Then VF € B}(c) implies |VF(r,z +t) —
VF(r,z)| < Cre=%|t|%. Therefore,
|F(lt], = + t) + F(|t], z — t) - 2F(|t], =)
= (F(0,z +t) + F(0,z - t) — 2F(0, z))]

It]
= | [ (@F(r,2+1) - 8 F(r,2)) + (BoF(r,z ~ t) - doF(r, )] dr
0

It
<C [rotfdr = Clt M+,
0

Next,

|F(lt], = + t)+F(lt], z — t) — 2F(|t], )|

1
= | [ St 2+ 71) + F(ll, = - rt) de|
0

n 1
=Xt [ (Fi(lth o+ rt) - Fi(ltl, 2 - 7)) dr| < Clef+.

j=1 0

Therefore, |F(0,z+t)+ F(0,z—t)—2F(0,z)| < C|t|'** and the proposition
is proved.

PRrROPOSITION 2. If the inequality
|f(z0,z) — f(20,2")| £ Cz5°*°|(20,2) — (20, 2")|°
holds whenever z¢ /2 < z§ < 2z¢ and |z—2'| < 2z, then f belongs to B;" (a).

(In other words, we need only check the bound on f in each Whitney cube
of the upper half space.)
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Proof. Suppose first that zo/2 < zg < 2zo. We want to show that the
restriction |z — z'| < 2z¢ can be dropped. Let 2V-1z¢ < |z — 2| < 2Nz,

N > 1. Define the sequence of points 2° = (o, z), 2! = (229,2),...,2N =
(2Nzo,z), 2Nt = (2Nzo,2'), 2Nt2 = (2N-12¢,2'),..., 22N+ = (20,2'),
and 22N+? = (z{,z'). Then
2N+1
|f(zo0,2) — f(z,2")| < D If(z%) - f(z*H1)),
k=0

and the sum is majorized by the series Ef=o(2"zo)°’ < max(2Ve,1)z§ <
25 %%%|z — z'|® since a < 6.
We may now assume

|f($o,$) - f(z(,)vz’)l < Cz(;&*’al(zovz). - (z67z,)|6

holds whenever z¢/2 < zg < 2z9. To check the inequality in general we
may as well assume that z{ < zo/2. Let 2441 = 2x/2, k = 0,1,...,N.
Choose N so that 2=Nzg > z§ and 2=V~1z¢ < z§. Our hypothesis implies

|f(z0,2) = f(20, ") < Czg®**le—2')’,  |f(zk,2")~ f(hsr,2')| < Caf.
Also, |f(zn,2") = f(25,2")| £ C(z5)*. Therefore,

N
|£(20,2) = f(zh,2")| < C (a5l - 2'|® + Y 2+(2h)°)
k=0

< C(zg**|z - 2'|° + max(2Ve, 1)(25)*)
< Clzg™* + (70) " *)(20,2) = (20, 2")I°
because |zg — z|% > 2V%(z{)® > max(2V*, 1)(z})°.

LEMMA 1. Letw € C§°(I), -1 < a -6 < 0, Aw(X) = g(X), X €
R; x R*, and dow(0,z) = 0, z € R*. Then

"V2w"B‘+(a) < Cligllg#(a)-

Proof. Extend g to all of R**! as an even function of zo: g(z¢,z) =
g(—z9,z). Then

w(X)=ca [ |X-X''"""g(X")dX' (insert log|X — X'| if n = 1),
R--O-l
0w
33:.-33,-

(X)= [ K(X-Xg(X")dX',

nn-’-l

where K is a standard Calder6n-Zygmund kernel, homogeneous of de%ree
—(n + 1), with mean value zero on the sphere. So the proof of this lemma
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amounts to proving that a standard Calder6n-Zygmund operator is bounded
on B} (a) extended evenly to all of R™+1,
Fix X,Y € R**!. Suppose that | X — Y| =¢. Then

w(X)-w()= [K(X-X")g(X")dX'- [K(Y - X")g(X")dX".
Also,
[ K(X - X")g(X")dX'= [ K(X")g(X - X")dX".
The first claim is that

[ K(X"(X-X" dX'l < Ceb|zo|*?.

| X'|<10e
Indeed,
J Kxhex-xhax'|=| [ KX')(g(X-X)-g(X))dX’
IX'|<10e |X'|<10e
<C [ X1 (o — |7 4 ol )X dX.
|X’'|<10e

This splits into three terms. One is
J X0 =St g = Celzg| 5+,
|X'|<10e
The second is
f lxvll-(n+l)+6|$0 _ z6|-6+a Xm,

|X'|<10e
lz—z512 4 Ixol

which is controlled by the first because a — § < 0 implies |z — z§| 75+ <
(3lzo])~*°. Finally, the integral

[ XSy - gy =bte g
|X*|<10e
|zo—z5|< 4|0l
is zero unless |zo] < 20e. Note also that |z§| > 1l|zo|, so that |X'| >
11zl + }|zo|. Make the change of variables t = zo — zj. Then the integral
is dominated by

) Y I e e Uil 22
|z'|<20e  |tI<|zol
< |zo|' 0 f ||~ (" D+8 dg! < |zo|™ < Ceblzo| =0+

lzol<|2'|<20e
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This concludes the proof of the claim.
We now have

[ EX"Y(X-X)dX+ [ K(X")g(Y-X')dX'
|X'|<10e |X'|<10e
< Ce’(lzol*° + lyol* ).

Next we need to look at the rest of w(X)— w(Y'). Since g(X') is supported
in I, the remainder is

J BEX")9(X - X') - g(¥ - X"))dX’
= f (K(X - X")- K(Y - X"))g(X") dX'

where K(X') = K(X') for 10 < |X'| < 10 and K(X') = 0 otherwise.
It is easy to check that since |[X - Y| = ¢, |[K(X - X') - K(Y - X')| <
Ce/|X — X'|**2. Therefore,

| f(R(X‘X')— R(Y~X'))g(X’)dX’|
= | J(B(X = X") - K(Y - X"))(9(X") - g(X))dX'

£ - -
< f XX (|36| Sto 4 EX 6+a)|X _ XI|6 dx'.
121X -X'|>9%
This splits into two terms:
f €|X _XIIG—(n+2) dXIIzOI-H-a 56-66_1 . Izol-6+a = €6|:t0|-6+°’.
| X-X'|>9¢
In the second integral
f €|X _ XIIG—(n+2)|zol—6+a dx'
I X=-X'|>9¢

we can restrict to the region |zf| < 1|zo| because otherwise the integral is
dominated by the previous one. But |z| < 3|zo| implies |z — z| > 1|ol.
Thus | X — X'| > 1|z — 2’| + }|zo|, and this last integral is dominated by

J el =1 + fool)P =) |af| -5+ da' da
| X=X'|>9¢
Iz6|< % Izl
SE|$0|1_6+°' f |z|6-—(n+2) dz
|z|2¢e+1z0|
= gl|zo]| 70t (e + |20])° 2 < €|zo| ™,  where z € R™.

This concludes Lemma 1.
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LEMMA 2. Ifwe C§°(I),-1<a-6<0,

Aw =0, Yo > 0,
Oow = F, Yo =0,

then ||w.-,'||B;+(a) < ClIFll aa+1)-
Proof. We have

i(z0,6) = [ e " bw(zo,z) dz = e~=oKI(—1/)¢|) F(£),
o

w(z9,z) = Py *g(z) and g€ A(a+2).
Thus by standard arguments [19 ]

|Vwi;| < Clzo|* |9l aat2) < Clzol* I fll Aat1)-
Therefore, if z0/2 < zg < 2z,

lwij(X) — wi;(X)| =

1
I [di’t wii (X' + (X' - X))] dtl < Cz& X - X'|.
0

If we restrict to | X — X'| < 10z, then this is majorized by z&~°| X - X'|%.
Now Lemma 2 follows from Proposition 2.

Define X = 3% _b;0; + bfor b; €R, b€eR, by # 0.
LEMMA 3. Ifwe C§°(I),-1<a-6<0,a <0,

Aw:ga y0>09
Xw:f’ y0=09

then ||wijl| g+ (ay < C(ll9ll5# (o) + 1l aa+1))-
Proof. Set F(y) = dow(0,y). We have
b(y,6) = [ e tw(y,y)dy, FE)= [ e VEF(y)dy.
R" R*
From Lemmas'1 and 2 we can solve

{Awo =9 Y% > 0, and Aw! = 0, Yo > 0,
QBouw’ =0, y=0, duw!'=F, y =0,

with ”w?j”B;‘(a) < Cllgll (o) and ||w}j||36+(a) < C||Fll a¢a+1)- Then w =
w® + w!. We need only show that ||F||s(a41) is majorized by "9"3;*(01) +
[Fllaa+1)- Indeed, f = Xw = Xv® + Xw' implies ||Xw!||s0t1) <
IXw® || s(a+1) + I fll s(a+1)- But by Proposition 1 and Lemma 2

”XwollA(a+l) < C||V2w°||36+(a) < C"g“B:(a)'
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Thus || Xw'||s@+1) < CUl9llpt(oy + I fllaca+ny)- Next, (wh)(r,£) =
—e~"KI(—1/|¢]) F(€), so that

(Xwh)N0,€) = boF(€) - (D ibs;/Iel + b/1€l) F(6). -
k=1
Because by # 0, we can rewrite this as

(&) = (b= Y it /161 - b/iel)” (Xwh)A(0,).

i=1
Hence by standard multiplier theory

| Fll sa+1) € CIIXw|| scat1)-
This proves Lemma 3.

Proof of Theorem A. It suffices to estimate w in a small neigh-
borhood U of the origin. If we make the change of variables w(Y') = w(6Y)
with |Y| < 1, we observe that

b;(8Y) — b;(0)| < C6°

and |b;(0Y ) — b;(0Y")| < CO°lY —Y'|*forall [Y| <1, |Y’'| < 1.

Taking @ sufficiently small, but fixed, we see that b;(8Y’) — b;(0) has
arbitrarily small A(s) norm. Similarly, a;;(8Y) — a;;(0) has small A*(s)
norm. After a linear change of variable we can replace a;;(0) by the identity
matrix 6;;. Thus we reduce to the special case in which

(#)  Aw(¥)+ ) e(V)wi(Y)=RY), %>0, |[Y|<2,

1,j=0

(+%) Xw(0,9)+ Y Bi(»)w;(0,y) = R(y), |yl <2,
j=0

with
n
X =) b;0/0y;, bj€R, by2co>0,
-

“ﬂj”A(a) <es, ||€ij||A+(s) <e,
for some ¢ as small as we like. We can also replace w by yw, where ¥ €
C§°(31), ¥(y) = 1 for y € I. This introduces error terms on the right
hand side of () of the form ¥;w;, ¥;;w. It introduces a term —(X¢)w —
Y- B;(8;¥)w on the right hand side of (*+). Since norms of these expressions
appear on the right hand side in the conclusion of Theorem A, we may add
these terms to the right hand side. Thus we are reduced to the special case
in which supp w C 2I. We can also assume that a;; and b; are supported
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in 2I. Set Aw = g; and Xw(0,z) = go(z). There is an explicit operator I
solving the boundary value problem of Lemma 3: w = K;(go,¢91). Lemma 3
gives us the estimates

IV K1(go, 91)"3:(.,—1) < C(ligoll acs) + ||91”B;‘(.s-1))-
Denote by Ko(go,g1) the restriction of w to o = 0. Then by Proposition 1,
IV Ko(g0, 91)ll a(s) < Cllgollacs) + l91ll 5} (s-1))-

The equations for w imply

go + B;0;Ko(90,91) = f, o1 +¢€i;0;;K1(90,91) = R.

This is a single equation on the space A(s) X Bf (s — 1) of the form (id +
T)[g‘l’] = [};J , where T is a contraction. Hence (id + T')~! is bounded and

lgollacs) + lg1ll 2 s—1) < CUIF Ml aca) + 1Rl 54 (4-1y)-
This concludes the proof of Theorem A.

We need one more linear estimate, namely the well-known estimates for
the Dirichlet problem in ordinary Hoélder classes (see [7, Theorem 6.19]).

THEOREM B. Suppose that

> aij(Y)wij(Y) = R(Y), Y €RyxR",

1,j=0

w(0,y) = f(y), y€ER"
Then
V2wl a+(g,1y £ CUIR| a+(p.21) + I fll a+(B4+2,21)
+IVwlla+s,2n + |wlla+(s,2))-

The constant C' depends only on the A*(8) norm of a;; and the ellipticity
constant.

4. Nonlinear estimates. We are now prepared to prove Theorem 1.
We begin with a Lipschitz function ¢ and suppose that log h(¢(z), z) € A(a)
for some a > 0. By Caffarelli’s theorem (Theorem 3), we know that u € C1*
for some s > 0. Following Kinderlehrer and Nirenberg, we change variables
toy; =zj,j=1,...,n, yo = u. The inverse function theorem implies that
we can write o = ¥(¥o,¥1,---,Yn) for a function ¥ € C1*([0,00) X R*) N
C>((0,00) x R™). We can rewrite the equations for u in terms of equations
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for ¥:

1+E¢2

-1 2 & .
— E i+ = E i); =0 fory >0,
%o pat 'pJJ ¢3 g ¢J¢’JO ¢3 Yoo = Yo

n 1/2
(HZM-) /¢o=¢(¢,y1,..-,yn) for yo = 0.
i=1

(Here ¢; = dv/dy; and v;; = 8*¢/0y; Byj, i,j = 0,...,n.) It is easy to
check that these equations take the form

n

Z aij(vw)d)ij = Oa g(¢0’ ¢l’ . '7¢n) = (P(d)v Yi,.. -9yn)1

1,j=0

with a;; uniformly elliptic and C*°, g € C*°. Because ¢ < 9 < C on the
boundary, we also have —¢' < d¢g/dyy < —C' < 0.

Let t € R™ and consider w(zo,z) = ¥(zo,z + t) — ¥(Z0,2). Define
¥Y4(zo, ) = ¥(z0,z + t). Subtracting the equations for ¥ and ¥* we find

Z at](vw)wu Z (atJ(V"p ) - a'J(V¢))¢tJ

i,j=0 1,7=0

Also,
1
I EdZ 9(VY + s(VY! = V) ds = g(V4') — g(V)
0

= (', y+ 1) — o(¥,y).

Hence,
Z[ f 5y (VO + 5(V = V) dolw; = 1,

where f = @(¥',y+t) — ¢(¥,y). We can rewrite these equations as

n

Z aij(Vy)wij = R, yo >0,

,7=0
Ebj’w]' = f, Yo = 0,

=0
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where
R= Z (8i(VY*) = aii( V)b,
fly) = ;J(:;‘ y+1t) - o(¥,9),
bi(y) = f 8¢J(vw(o,y)+s(w‘(o ,¥) = V$(0,9))) ds.
Indeed,

1
J 2 o(V+ s(Vy* - V) ds = o(V) — g(V¥) = .
0

—g(w»+ (Vi - Vo)) = Z

=0

8¢J (VY + s(Vy! — Vy))w;,
so that b; has the desired form.

Because 1 and ' belong to A*(s + 1), we see that b; € A(s) and
a;j(Vy) € A*(s). Furthermore, it is easy to check from bounds on u in
Whitney cubes that }; € B} (s — 1) whenever § < s (with bound indepen-
dent of t). Next,

1
f Ed- a:;(V + (V! — Vo)) ds .

j

00

a;;(VY*) — ai;(VY)

Q)IQ?

V?/) + (Vo' — V) ds (¥} — %)

]
ol
3 M:

cfi(¥f —¥x), where cf; € A¥(s).

a-
l
o

Remark. For any v € A%(s), 0 < § < 8 < 1, ||[v} — v|q4(5) <
2||vlf 4+ (s [21° .

Proof. We have

(v (Y) = o(Y)) = (v (Y") = o(Y")] < 20t°[[vll a+(s)-
Also,
(0 (Y) = o(Y)) = (v*(Y") = o(Y"))| = |(v"(Y) = v*(Y")) = (v(Y) — »(Y"))|
<2lY = Y'*l|oll a+(a)-
But min([t]*, |Y = Y'|) < |t*~°|Y = Y']. So
(0" = 0)(Y) = (v" = o)(¥")| < 20t* )Y = Y'|*[]ol| g+(s)-
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Because ¥x € A*(s) we can conclude ||¥} — ¥i|l4+(s) < CIt|*~%, and
hence j
laii (V)| a+(s) < Clt|*~°.
Finally, we have
”R”B;"(.-l) < ClY*e.

A similar discussion with f shows that [|f||4,) < C|t|*~*. (We may evi-
dently assume s < a since otherwise there is nothing to prove. When a > 1,
we need to take second differences: w = ¥+~ —2%, but the other aspects
of the proof barely change.)

We are nearly in a position to apply Theorem A. However, we must also
estimate w; and w in the interior. In fact, we have just shown |[wg||4+(5) <

C|t|*~%. But it is obvious that ||wk||B‘+(,_l) < C|lwkllp+(s)- The estimate
for w is even simpler. Therefore, applying Theorem A, we find that

lwiill g (amay < CU™ + 117 lwkll ass)-
In particular, if we restrict to the space I N {yo > h}, we find
[$ij(h, z +t) — ¥ij(h, z) = (¥ij(h, 2’ + t) — ¥ij(h, z"))]
< CR*TI5(I =0 + [t1° ")z — '),
Set ' = z — t; then we have

[¥ij(h,z + 1) + Pij(h, z — t) — 2¢ij(h, z)|
< Chs-l-&(ltla + Itla—a+6)'

This is the second difference we referred to in the introduction. Let f(z)=
¥(h, z). Then using the second difference norm for A(3) we see that || f|| 4(542)
< Ch*~1-% where 3 = min(s,a — s + §). Thus 9 satisfies an equation of
the type in Theorem B in the half space yo > h. We already know that
¥ € At(s + 1), so that V¢ € A*(s) and 9 € A+(s) with uniform bounds
independent of h. (This is even better than we need, since s — 1 - § <
0.) Finally, ¢ satisfies a homogeneous equation with coefficients a;;(Vy) €
A*(s) with uniform bounds independent of h. Therefore,

V29| a+(5, 1n{yo>h}) < Ch*~172.

We conclude that on a Whitney cube 2k > yo > h, |Y - Y'| < h/2,Y =
(%,9), Y' = (%,¥),

|V2‘¢'(Y) _ V2¢(Yr)| < Chs—l—6|Y - Yllﬁ < Ch.s-l-—26+ﬁ|y _ Y'|5.
Therefore by Proposition 2, V24 € B} (s—1-§+ ), and by Proposition 1,
V€ A¥(s—6+8). Nowif s < a—s8+ 6, then s— 6§+ = 28— 6.

We now repeat the argument above with s replaced by 2s — §. Thus we
can essentially double the regularity s at each step. We are constrained
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by s < 1. If a < 1+ é we can always increase s until s > a — s + 4.
At that point s— 6+ 8 =3—6+ (a— s+ 6) = a, and we have proved
V¢ € A*(a). In fact, by changing §, we can prove regularity in this way
when 0 < a < 2. However, having obtained regularity for 0 < a < 1+ 6 one
can also differentiate the equation any number of times to obtain Theorem 1
for any a > 0.

5. Continuous data. We will now prove Theorem 2. We are supposing
that log h(¢(z),z) is continuous, so that by Caffarelli’s theorem, ¢ € A,.
Define kx(Q) = Ng - VG x(Q), where G x(Y) is Green’s function for £2
with pole at X. In the case p(z) = a-z+b,a € R*, b € R, kx(Q) is the
ordinary Poisson kernel in a half space. In general, ¢ € A, implies that for
any € > 0 and M < oo, there exists rg > 0 such that for each r < rg, there
exist a € R™ and b € R such that

lp(z)—a-z—b| <er/M for |o| < Mr.

The idea of the proof is to make use of the Rellich formula [10, Lem-
ma 1.4]:

(1) wina [ kx(@P@ - X.Naydo(@)= [ kx(c»,}ilf-(é%_—l,

for any X € {2, where do denotes surface measure on 92 and w,, the surface
area of the unit sphere in R"*!. The function kx(Q) will be very close
to the ordinary Poisson kernel, and this will lead to control of do(Q) =
V1 + |V(z)|? dz which will lead in turn to control of |V(z) — a|.
Without loss of generality we may suppose that b = 0. We then have

lp(z) —a-z| <er/M for |z| < Mr.

Throughout the argument ¢, r, and M will be fixed, but our bounds will
be independent of these parameters. Moreover, we are doing analysis in a
neighborhood of £ = 0, but the same exact argument worksin |z—zo| < M.
Note that since ¢ if Lipschitz, |Vp(z)| < A. We can also assume |a] < A.
Our bounds will depend on the constant A.

Let o = /1+ |a|]? and N, = (-1,a)/a, the outer unit normal to the
half space o > a-z. Let Pz = (a-z)a/|a|?, the projection R®* — Ra. Define
2z, : R® — R™ by

z4(2) = (id — P)z + Pz/a.

It is easy to check that the mapping @, : R® — R™*! given by
Qa(2) = (a - za(2),24(2)) = (a- Pz/a,z4(2))

is a linear isometry from R"™ to the hyperplane zo = a - z normal to N,.
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Also, dz = (1/a)dz and
do(Q) = V1 +(Ve(2))*dz = 1+ |Ve(za(2))I? dz/e,
with the parametrization z = z,(2) and
Q = (p(2),2) = (¢(2a(2)), 2a(2)) = Q(2).

Let P,(z) = c,7/(r? +|2|?)"*! be the Poisson kernel for the upper half space
r > 0.

LEMMA 4. For any € > 0 and any M < oo there ezists rg > 0 depending
only on the control in A, of ¢ and the modulus of continuity at ((0),0) of h
such that

(1= ¢/M)P.(2) < k—rw,(Q(2)) < (14 ¢/M)P.(2)
with Q(z) = (¢(z4(2)), za(2)) for all |z| < Mr.

Proof. This lemma is a nearly immediate consequence of [10, Lem-
ma 2.10], which says that if we define K(X,Q) = kx(Q)/h(Q), then for all
€ > 0, M we can find r¢ > 0 such that for all |z| < Mr,

(1 —e/M)hxxr(Z) < P(Z)] K(—TN.,Q(Z))
< +e/M)h*x.(2)
where h = h(Q(z2)), x+(2) = r~"x(r~1z) with x the characteristic func-
tion of the ball with volume 1 (f x(z)dz = 1) and * denoting ordinary
convolution on R™. While that lemma is stated for C! functions ¢, it
applies without change to functions ¢ in A,. Next, observe that for ro
sufficiently small, r < 7o, h(Q(2)) = (1 + O(e/M))hy for |z| < Mr, where

ho = h(Q(0)) = h(¢(0),0). Hence h*x,(z) = (1+0(e/M))ho and Lemma 4
follows.

We are going to make use of (1) with X = —rN,. Let ¥ € C$°(B)) be
such that 0 < ¥ < 1on By and ¥ = 1 on By,.

LEMMA 5. For any § > 0, there exists M < oo such that for alle > 0
there erists rg > 0 such that for r < rg, and X = —rN,,

® = [ kx(@Q@- X,No)de(Q)
" on

1

= wn f Y(z/Mr)P.(z)*rdz(1 + O(6 + ¢)),
" 80
(b) 8! kX(Q)I‘XL:'(QQI,);—_f = R! ¢(Z/MT)P"(‘Z)(IZI2+r2)(l‘“)/2

XV1+|Ve(za(2))]2 dz/a,
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(c) L;l_ f ¥(z/Mr)P(2)*rdz
n R.
= f W(z/Mr)P(2)(|z)? + ) -"/2 dz (1 + O(8)).
.-

Proof. Note that by looking at the special case of (1) in which ¢(X) =
0, we see that

1 2. 4. _ 2, .2\(1-n)/2
o J P.(2)*rdz = J P.(2)(]2)* + ?) dz.

Part (c) follows from this equation. For M sufficiently large, multiply the
integrands on the left hand side of (a) and (b) by ¥(z/Mr) and change the
result by a factor at most (1 + é). The choice of M depends only on the
Lipschitz constant as in [10, Lemma 2.3 (a) and (c)]. Next, for |z| < Mr,

(@ — X,Ng)| <£1Q - X| < 2Mr.

Therefore, using Lemma 4,

J kx(@)*-Pu(2)*| {Q - X, Nq)| do(Q)

lz|SMr

3e dz

< = 2. . =

< [ PP -2Mr-(1+4)—
|z|<Mr

< 0(e) fP,.(z)zrdz.
Thus we can replace kx(Q)? by P.(z)?. Now we calculate
(Q — X, Nq)da(Q) = ((¢(2),7) + TNa) - (-1, Vip(z)) dz

- (—‘P(z) boVols)+ L+ %‘—)) da
= [z -(Vep(z) —a) - (¢p(z)—a-z)

+ % -(Vep(z) —a) + ra] dz.

Let (m;j) = id — P + P/a. We will use the convention that repeated
indexes are summed from 1 to n in what follows. Thus z; = m;;z;. For
any C! function f, (8/02)f(za(2)) = fi(za(z))m;i. Therefore, fi(zq(2)) =
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mik(0/02;) f(z4(2)), where mj;ix = 6;x. Hence,
z - (Vo(z) - a) = z:((p(z) — az)s)
= mi;2j(Mki(8/02k))(p(2a(2)) — @ - 24(2))
= 2k(0/0zk)(p(24(2)) — @ - T4(2)).

Therefore,

J ¥/ M)P(2)*[~(p(z) - a-2) + 2 (Vo(z) - @)
o

+ 2 (Ve(z) - a)] dz/a

= [ $(z/rM)P,(2) [zk(a/azk)(so(za(z))—a-za(z))
-

~ (p(2a(2)) ~ 8 2a(2)) + "i(0/028) plea(2)) - 0 2a(2))] Z

a

= — [ (a4 10(z/rM)P(2)(¢(2a(2)) - a- 2a(2)) d2/a
R,

a

— [ [®/0z0)%(z/r M)P,()?] (2 + ")
-

X (p(za(2)) - 0 - 2(2)) 2.

This integral is majorized by a multiple of ¢ fg, P,(2)*rdz. This proves
part (a).

The proof of part (b) is similar, but simpler. We have |Q4(z) — Q(2)|?
lp(za(2)) — a - 24(2)]? < €272 for |2] < Mr, and | — rN, — Q.(2))?
72 4+ |2]%. Hence | — rNy — Q(2)|2 = (r? + |2)*)(1 + O(¢)) for |z| < Mr.
Thus | X — Q=" = (v + |2|>)(*~™/%(1 + O(¢)) and we can replace kx(Q)
by P,(z) as in part (a). This concludes the proof of Lemma 5.

Now we can subtract (a) from (b) in Lemma 5 and using (}) and Lem-
ma 5(c) we find

J $EIMAP)12f + )= (/TE Vel - o) 2
-

=0(8+¢) [ P(2)(|2* + r)1="2dz = Cor="10(6 + ).
RI

Dividing by a suitable constant multiple of 7~ "+! we see that there is a di-
mensional constant a, such that the function g(z) = a,(1+|2|*)""¢¥(z/M)
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satisfies

[ 9(2)dz=14+0(8) and

R
J (V1 +Ve(za()P - V1+1alP)dz = O(6 +¢)
with g¢,(2) = r7"g(z/r).
Next, the same integration by parts used to prove Lemma 5(a) shows that

J 5:(2)a - (Voplza(2)) - ) Z = O(6 +e).

Therefore,
[ 9:(2)B(Vp(za(2)),0) dz = O(6 + ¢)

where

B(v,a) = 1+ |v]? - 1+]a]> - a-(v-a)/V/1+]al%
Define 8 = /1 + |v|? and a = /1 + |a|?, as before. Then

1.|(=1,0) (-L,a)|" 1 (-1,v)-(-1,0)
'éﬂl 5 " a -5/@(1+1—2 )

af
=f-(1+v-a)/e
=B - (1+|af +(v-a)-a)/a
= B(v,a).

This identity can be stated in geometric form as

1
B(Vy(z4(2)),a) = §ﬁ+ IV@(za(2))I? [Ng(z) — Nal?,
but we will not use it in that form. Instead, we write

o e I/ R

a
Thus

o =5 -5 <2 - 3 +|—- il
< 2B(2B +2|a|*B) = 4a2ﬂB.

We claim that either [v—a| < Ve+ 6 or [v—a| < 1203B/ve +6. In
fact, if |v = a| > Ve + 8, then

3a
vVe+é

Therefore,

lv—al2fv-al+at+12]v|-]a|+a+12]v]|+125.

Blv—a| < \/—lv—al2 \/— -(4a*BB),
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which implies |v — a| < 1203B/V/c + 6. Therefore, since [ g(z)dz = O(1),
we can split the integral that follows into two parts according to whether
|Vp(z4(2)) — a| is less than or greater than /< + § to obtain

J 9:(DVe(za(2)) ~aldz < Ve+5 [ g:(2)dz
o

+ o= [ 912" B(Velza(2)), o) d:

R
= O(Ve + §).

Since the origin in this argument was arbitrary, we have proved Vyp € VMO.

6. Open questions. Harmonic measure is the measure on 92 associ-
ated to a point P € 2 such that

= [ /(@wP(Q) forall feCo(32)
an

where u € Co(R2) is the solution to the Dirichlet problem Au = 0 in £,
u|lpp = f. In a Lipschitz domain dw® is mutually absolutely continuous
with surface measure do, and dw”/do is the normal derivative of Green’s
function with pole at P (defined almost everywhere).

A natural class of domains for potential theory is the class of nontangen-
tially accessible (NTA) domains defined in [8]. If £ is an unbounded NTA
domain in R**1, then there is a positive harmonic function » in £ that van-
ishes on 312, and u is unique up to a constant multiple. This function should
be viewed as Green’s function at co. In the case 2 = {(zo,2) : zo > 0},
u(z9,z) = czg. The function u determines a harmonic measure at oo, dw,
by the formula

f pdw = f uAp for all p € CP(R™1).
2

The heart of Caffarelli’s theorem (Theorem 3) is a Liouville-type corol-
lary which says that if §2 is the region above the graph of a Lipschitz function
and u has normal derivative constant almost everywhere, then 2 is a half
space and u is linear. This can be rephrased as saying that if dw = do,
then £2 is a half space.

On the other hand, Keldysh and Lavrent’ev costructed an example in
the 1930’s of an NTA domain in R? which was not a half plane but for which
dw = do. (See [5]. In the bounded case the goal is to show that dwP = do
for some region other than a circle centered at P. The unbounded case is
not treated explicitly, but follows from the same techniques.) Let us define
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a KL domain to be an unbounded NTA domain for which dw = do. By
taking a Cartesian product with a planar example, one obtains KL domains
in any dimension that are not half spaces.

Caffarelli’s theorem is analogous to Moser’s theorem [16] that any Lip-
schitz graph that is a minimal hypersurface is necessarily a hyperplane.
However, there are complete graphs (in R?) that are not hyperplanes, yet
they are minimal hypersurfaces [2].

PROBLEM 1. Does there ezxists a KL domain 2 = {(zo,2) : z9 > ¢(z)}
with ¢ not linear ¢

PROBLEM 1'. Does there ezist a KL domain with C*® boundary ?

In R? the answer is no because C*® domains and regions above graphs
have what is known as the Smirnov property (see [5]). Furthermore, Lav-
rent’ev proved that the chord-arc condition (?) suffices to rule out a KL
domain.

However, in higher dimensions the situation is very different. Consider a
function u(@), defined in an open set w C ", the unit sphere in R*+!, satis-
fying v > 0 and (A +n)u = 0in w, u = 0 on Jw, and the normal derivative
O0u/0v = constant on Ow. (Here Ay denotes the spherical Laplacian: in
polar coordinates A = (8/8r)? + (n/r)d/0r + (1/r?)Ay.) It follows that
ru(#) is a positive harmonic function in the cone 2 = {(r,0) : § € w} which
vanishes on 92 and has constant normal derivative. One obvious solution
to this problem is a degree one spherical harmonic — ru(8) = azo in some
coordinate system — and {2 is a half space. But there is another example,
namely, w can be a symmetric region about the equator formed by remov-
ing spherical caps about the north and south pole (see [1]). The solution u
can then be computed using rotational symmetry and ordinary differential
equations. This example is the “enemy”. It shows that the chord-arc con-
dition or any comparable notion does not suffice to rule out the possibility
of a domain other than the half space. Because of the “bad” cone, the best

we can expect are “small constant” theorems (see Caffarelli [3], part II, and
Alt and Caffarelli [1].)

PROBLEM 2. Suppose that 2 is an unbounded KL domain and for large r,
o(B, N03R) < (14 €)ear™, where c,r™ is the volume of the ball in R of
radiusr, B, is any ball in R**!. Show that if ¢ is sufficiently small depending
on n, then 2 must be a half space.

There is a variational problem associated to constructing KL domains.
() 892 is said to satisfy the chord-arc condition if length(arc (z1, 22)) < C|z1 — 23],

for all z;, z2 € 392, where arc(2, z2) is the arc along 82 from 2; to 22 and |z) — 23] is
the ordinary distance, or length of the chord from 2; to z3.
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One has to distinguish between critical points and absolute minima for this
problem. The example of the cone built on the region w symmetric about
the equator is only a critical point and not a minimum for the functional,
so there is still hope for a more general theorem for minimizers of this
variational problem.

The procedure in [2] for constructing minimal graphs in R? involves
passing from minimal cones in R®. In order to get started with the analogous
question one needs to consider

PROBLEM 3. For each A, find all Lipschitz domains w in S™ such that
there is a positive solution to Agu+Au = 0 inw, u|g, = 0 and du/0v|s, = ¢,
a constant. (A = n is the only case relevant to the problem in R**!, and
one needs to calculate which of these are minimal.)

Serrin [18] has shown that the only smooth domains {2 in R® with solu-
tions to Au+Au = 0 and u > 0 in 2 with u|sp = 0, du/dv|sn =constant are
balls. On the negative side we expect an analogue of the Keldysh-Lavrent’ev
phenomenon:

PROBLEM 4. Find a (nonsmooth) domain 2 in R? and a solution to

u>0and Au+ Au =0 in 2, u|pg = 0, u/dv|sn = ¢ almost everywhere
on 012.

(One could ask the similar question on the sphere.)
Finally, let us conclude with a nonlinear boundary value problem whose
solution would imply Caffarelli’s theorem.

PROBLEM 5. Suppose that 2 is a Lipschitz domain, Au =0 in 2, ¢! <

Ng - Vu(Q) < ¢ and |Vu(Q)|* belongs to C*(8R2). Show that Vu € C(R)
for some € > 0.
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