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1. Introduction. Let g be the element of L?(R) defined by

gty =et.
Let o and 3 be fixed positive numbers, and let p and ¢ be arbitrary integers.
Define
gp q(t) = e21n'qate-(t-pﬁ)2 .
We call the functions {gp .} the Gabor functions for scales @ and 3. The
following problem arises in the theory of the reliability of interpreting a radar
signal, as well as in a number of other contexts. Do the Gabor functions

for scales a and 3 span a dense subspace of L?2(R)? The idea is that if an
outgoing radar signal is of the form

s(t) — e-t"'e21riwt

for w a fixed frequency, then we may use the Gabor functions with scales a
and B as standards of comparison for the incoming signal. If these Gabor
functions span a dense subspace of L2(R), then in theory the incoming signal
can be interpreted reliably. See for example [aus], [jan], or [fol].

The answer to the above question was given in 1971 independently by
Perelomov ([per]) and Bargmann et al. ([barg]), and is as follows:

1.1. THEOREM.

(1) If y = aB = 1, then the Gabor functions for scales a and 8 do span
a dense subspace of L*(R).

(2) If y = aB < 1, then the Gabor functions for scales o and  do span
a dense subspace of L*(R). '

We are indebted to W. Moran who introduced this subject to us during a visit in
Boulder in the summer of 1989. Thanks are also expressed to A. Ramsay who, with
W. Moran, discussed the beginnings of this research with us. Finally, the author wishes
to express his gratitude to J. Packer whose helpful conversations and suggestions were
most constructive.
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(3) If y = af > 1, the Gabor functions for scales a and 3 do not span
a dense subspace of L*(R).

Both proofs of this theorem use relatively deep results from complex
analysis and are specifically designed to treat the Gaussian g(t) = e™*.
Already in the 1940’s von Neumann had asserted without proof part 1 of
this theorem.

In this paper we prove a generalization of parts 1 and 3 of the above
theorem that is applicable to an arbitrary function (signal) f € L?(R). We
also give a theorem along the lines of part 2 of Theorem 1.1, but it is not
as precise as our other results, and it is not clear how to use it to derive
part 2. Our method of proof uses the unitary representation theory of the
non-type-I discrete Heisenberg group rather than complex function theory,
and we suggest that this non-type-I kind of analysis can be used to deduce
other similar results.

Let f be an element of L*(R), let a and 3 be fixed positive numbers
(scales), and for integers p and ¢ define

fpa(t) = €™ f(t — pp).

We say that f satisfies the Gabor condition for scales a and f if the set of
fp.q’s spans a dense subspace of LZ(R). The generalized question from signal
processing is then: When does f satisfy the Gabor condition for scales a
and 8 ?

With the notation as in the preceding paragraph, our first two theorems
are the following:

1.2. THEOREM. Suppose v = af3 = 1. Then f satisfies the Gabor condi-
tion for scales a and B if and only if

z f(t + nﬂ)e%n'na _7£ 0

n=-—0oo
for almost all t and s.

1.3. THEOREM. If v = af3 > 1, then f does not satisfy the Gabor condi-
tion for scales a and £.

Remark. It is evident from Theorem 1.2 that whether f satisfies the
Gabor condition depends explicitly on the values of the scales @ and 8 and
not simply on the product af.

We can also derive part 1 of Theorem 1.1 from Theorem 1.2 by studying
the trigonometric series

)
Z e-(t+nﬁ)2 e2mins

n=-—0oo
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For each fixed ¢, this is the Fourier series of a nonvanishing function of s
because the coefficients decay so rapidly (see [zyg]). Note that this series is
nonvanishing independent of the size of af. The point is that when a8 > 1
the nonvanishing of this trigonometric series does not imply that f satisfies
the Gabor condition.

It is also evident from Theorem 1.2 that any f having compact support,
and nonzero everywhere on some interval of length 3, will satisfy the con-
dition in that theorem, the trigonometric series being a polynomial in that
case. Hence, if a8 = 1, the set of f’s satisfying the Gabor condition for
scales o and f3 is dense in L?(R).

Before stating our final result we must introduce some additional nota-
tion. For a and S fixed positive scales, v = af, t any real number, and f
any function on R, define 74 g,:(f) to be the sequence given by

Na,5,t(f)n = f(({t — n7) + ny)/e),

where (z) denotes the fractional part of z. We will see below that, if f €
L%(R), then for almost all ¢ the sequence 7, s:(f) belongs to I2.

We let R(a, 3,t) denote the subspace of [? consisting of the sequences of
the form 74 g ¢(f) for f € L%(R).

Our final theorem is then:

1.4. THEOREM. Let a and 3 be positive scales, suppose vy = aff < 1, and
let f be in L*(R). Write f, for the translate of f by z, i.e., fz(y) = f(z +y).
Then f satisfies the Gabor condition for scales o and [ if and only if for
almost all0 < t < v, the sequences { f?*} span a dense subspace of R(a, 3, 1),
where

7t = na8,4(fip)-

Remark. The condition in Theorem 1.4 leaves much to be desired. In
the first place, the subspace R(e,(,t) is in general npt dense in /2, and it
does not seem simple to describe it. It is therefore difficult to verify that
some set of sequences spans it. In particular, if f(t) = e“z, we do not see
how to verify the condition, so we cannot derive part 2 of Theorem 1.1 from
Theorem 1.4.

2. Some representations of the discrete Heisenberg group. The
discrete Heisenberg group is the set G of all matrices of the form

1 pr
01g4],
0 0 1

where p, ¢, r are integers. The center of G is the subgroup Z determined by
the equations p = ¢ = 0, and we shall also have occasion to use the abelian
subgroup H determined by the equation p = 0.
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For positive scales a and 3, set ¥ = af, and define operators pg"f’,. on
L%*(R) by

P;',’f,rf(t) - e-27rir7621riqatf(t _ Pﬂ) .
For each real ¢, define a character x't of the subgroup H by

t — J2migqt —2rir
x'V'(q,r)_e qe 1,

and let o7t denote the representation ind$ x"* of G induced from x7:.
That is, 0™ acts in /2 and is given by

U;"’;’rf(n) — e—27rir'ye21riqte21riq'ynf(n _ p) .

For each § > 0 define I; to be the interval [0,5), and define D”° to be
the direct integral representation

DY — f“’a-v,t dt, .
Is

and write M"® for the von Neumann algebra generated by the representa-
tion D9,

Because the induced representation o7 is unitarily equivalent to the
induced representation o7'+7, it follows immediately that DY'™" is unitarily
equivalent to n x D7

Recall finally that if M is a von Neumann algebra, then M’ denotes its
commutant.

2.1. THEOREM.

(1) The map (p,q,7) — p;’"qﬁ,, is a unitary representation of G.

(2) The unitary representation p™P is unitarily equivalent to the repre-
sentation D77, Hence, the unitary equivalence class of the representation
p*B depends only on 7.

(3) D! is equivalent to the representation ind$ ¢ of G induced from the
character ¢ of the center Z, where ¢(r) = e~27™,

(4) M7! has a cyclic and separating vector.

(5) Both M"'! and (M"'')' have finite traces, whence are finite von Neu-
mann algebras.

(6) D is unitarily equivalent to DY'+%' if and only if y=v' and 6 = §'.
(7) For any two positive numbers y < §, M and M"° are isomorphic
von Neumann algebras.

Proof. One can verify part 1 directly. Next, for each positive 4, define
7> : L2(R) — L%([0,6) x Z) by

U*PLf(t,n) = f(t/a+nB) = f((t + ny)/a).
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One easily checks that if § > 7y then U*#+® is 1-1. Also, if § < v, then U5+
is onto. Further,

’6 6 lﬁ preed ’ ’ﬁ’a
U*P8opyit, = Do USPP,

and this proves part 2. We also see here an explicit realization of p*# as a
proper subrepresentation of D"*® whenever § > 7.

Let @ denote the subgroup of G determined by the equations p = r = 0.
If Ag denotes the regular representation of @, then, since @ is isomorphic
to Z, we see that the representation

f ® X‘Vvt dt
[0,1)

of H = Q X Z is unitarily equivalent to the representation Ag X ¢ of H. This
latter representation is unitarily equivalent to the induced representation
ind¥ ¢, since the forming of direct integrals and the process of inducing
commute. Part 3 now follows from the theorem on inducing in stages.

The induced representation ind$ ¢ acts in L2(Z%) and generates the same
von Neumann algebra as does the regular w-representation of Z2, where w
is the multiplier on Z2 X Z? given by

w((pla q1), (Pz, q2)) = e-z”"Pl 927 ,

so that part 4 follows from the analogous results about such regular mul-
tiplier representations of discrete abelian groups. See, for example, [klep].
Furthermore, part 5 is a consequence of Theorem 9 of that same reference.

Since the restriction to the center Z of the representation D is just
a multiple of the character r — e~27"7, we surely must have that D7 is
unitarily equivalent to D% only if ¥ = 4'. To complete the proof of part 6
then, we may assume that ¥ = 4’ and that § < §’. Suppose first that §' =
and assume by way of contradiction that P is a unitary equivalence between
D71 and D7, Then P is an isometry of the space H(7,1) of the direct
integral representation D!, i.e., the space L2([0,1),1?), into itself since the
space of D7 is

H(v,6) = L*([0,6),1?).

It follows easily that P commutes with every operator D;'q ~» Whence P €
(M71)". Let I denote the identity operator on H(v,1). If p # I is the
projection of H(7,1) onto the proper subspace H(v,46), then we see imme-
diately that p = PP* and I = P*P. Now, since (M"!) is a finite von
Neumann algebra, the identity operator I is not equivalent (in (M™!)") to
a proper projection, so we have arrived at a contradiction.

For a general &', let S be the map of H(y,6') = L2([0, '), 12) onto H(v,1)

given by
§f(t) = f(1/8').
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If Q were a unitary equivalence between D% and D%, then P = SoQoS§ ™!
would be a unitary equivalence between D! and D"%/¢' 50 that the general
case of part 6 follows from the special case when §’ = 1.

Finally, given positive numbers vy and §, with 4 < 4, it is obvious that
D77 is a subrepresentation of D7°. The restriction map is then a homo-
morphism of M”75 onto M, Also, if n is an integer for which ny > §, then
D7 is a subrepresentation of D™, But, since DY = n x D7, MV
is isomorphic to M. Again, the restriction map is a homomorphism of
MY™ onto M"®, and the proof of part 7 is complete.

Remark 1. The connection between the signal processing problem
mentioned in the introduction and the representations of the discrete Heisen-
berg group is this. An element f of L?(R) satisfies the Gabor condition for
scales a and S if and only if f is a cyclic vector for the unitary representation
p>P, i.e., the linear span of the functions p3'#_f is dense in L*(R).

Remark 2. From the point of view of representation theory, it is
parts 6 and 7 of the preceding theorem that are perhaps of most interest.
Indeed, for a fixed 7, the representations D7*® form an uncountable family
of pairwise inequivalent unitary representations, but their von Neumann
algebras are all isomorphic. Moreover, if 7 is irrational, these von Neumann
algebras are type II factors.

3. Proof of Theorems 1.2, 1.3, and 1.4. Let a and B be positive
numbers, and suppose first that v = af < 1. By Theorem 2.1, p*# is
equivalent to D77, and it is obvious that D" is a subrepresentation of D1,
Also, by Theorem 2.1, D! is cyclic, whence so is the subrepresentation
p%#. However, we are specifically interested here in knowing exactly which
functions f are cyclic vectors. To determine this, we introduce another
representation of G.

Consider the representation T, acting in L2([0,1) x [0, 1)), that is given
by

T;,',q,,-f(t,s) — e—21rir'ye21riqte21ripaf((t _ m>, 8) ,
where again (z) denotes the fractional part of z.

3.1. THEOREM. Let a and 3 be arbitrary positive scales, and write v for
af.

(1) T is unitarily equivalent to D!,

(2) A function f(t,s) is a cyclic vector for T" if and only if for almost
all 0 <t < 1 the sequence of functions {f™*(3)} spans a dense subspace of
L%([0,1)), where

fi(s) = €T f((t - my), ).
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(3) If v = 1, then an f € L*(R) satisfies the Gabor condition for scales
a and B if and only if

Y ft+nB)e™ £ 0

n=-—0oo

for almost all t and s.

Proof. Define V : L%([0,1) x Z) — L?([0,1) x [0,1)) by

Vit,s)= Y f((t-ny),n)etmim.

n=-—0oo

One checks directly that V is unitary and that

"l -1 _ vy
V ° DpiQ|r 0 V - Tpvar *

This shows part 1.
Suppose next that f € L?([0,1) x [0,1)) and that h € L%([0,1) x [0,1))
is orthogonal to each function T, .f. Fixing p and r we then have

1 1
0= f ez”‘q‘[ f e*™P f((t — py), s)A(t, ) d.s] dt,
0 0
which- implies that for almost all 0 < ¢t < 1 we have
1 . - 1 -
0= [P f((t - py),s)h(t,s)ds= [ fP*(s)h(t,s)ds:
0 0

Now, f is a cyclic vector for 77 if and only if the only vector h that is
orthogonal to each T)), f is the zero vector, which we see is so if and only
if the functions { f""ﬁ span a dense subspace of L?([0,1)). This completes
the proof of part 2.

Finally, if y = 1, then p*# is equivalent to T'. An element f of L?(R) is
then a cyclic vector for p*# if and only if the function V(U*P( f)) is cyclic
for T1. By part 2, f is cyclic for p*-# if and only if for almost all 0 <t < 1
the sequence { "} spans a dense subspace of L2([0, 1)), where

fn,t('s) — e27ins Z f((t +j)/a)e21rija’

j=-o0

Clearly these functions span a dense subspace if and only if

Z f(t + nﬂ)eZwim # 0

n=-—0o

for almost all s, and this completes the proof.
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3.2. COROLLARY. Let a and 3 be positive, and suppose v = a8 < 1.
Then a function f(t) € L*(R) is a cyclic vector for the representation p™P
(i.e., satisfies the Gabor condition for scales a and B) if and only if for
almost all 0 < t < 7, the set of sequences {f™'} spans a dense subspace of
R(a,B,t), where

Pt =n0,8.4(frp) -

Proof. Since v < 1, the map U*#1, defined in the proof of Theorem
2.1, is a unitary equivalence between the representation p®** and a subrep-
resentation of D!, We may easily adapt the proof of part 2 of Theorem 3.1
to show that f is a cyclic vector for p®? if and only if for almost all 0 < ¢ < 1
the sequence of functions {[V(U*"?1( f))]"} spans a dense subspace of the
set of all functions ¢ € L%([0,1)) such that ¢(s) = V(U*?1(h))(t,s) for
some h € L%(R). For each integer n and each 0 < t < 1, let {a;-"t} denote
the sequence defined by

a}t = USPf((t - §7),5 = n) = f(({t = 37) + 37 = n7)/a) = Nape( Fup) -

We see then that f is a cyclic vector for p®? if and only if for almost all
0 <t < 1 the set of sequences {a™*} spans a dense subspace of the set of all
sequences {a;} € I for which there exists an element h € L?(R) such that

aj = U*PIh((t = j7),5) = M(({t = 57) + §7)/a) = Na,p,(h);) -
That is, f is a cyclic vector for p*? if and only if for almost all 0 < ¢ < 1
the set of sequences {7q,3,/(fng)} spans a dense subspace of R(a, 8,1).
Finally, if 0 < t < 1—+, then we see that the sequences {74,5,:(fr3)} span
a dense subspace of R(a,f3,t) if and only if the sequences {74,4,t4~(frns)}
span a dense subspace of R(«a,3,t+7). This clearly reduces to the assertion
of the corollary.

Remark. Of course, part 3 of Theorem 3.1 implies Theorem 1.2. The
corollary implies Theorem 1.4.

3.3. THEOREM. Let a and B be positive numbers, and suppose that v =
af} > 1. Then the representation p®® is not a cyclic representation, i.e.,
no function f € L*(R) is a cyclic vector for p*P.

Proof. Assume false. Then the von Neumann algebra M7 has a cyclic
vector. Also, each operator p;”’f’ - commutes with the representation p1/8:1/a,

Therefore, the von Neumann algebra (M1/71/7) has a cyclic vector. Since
1/7 < 1, we know that the representation p!/8:1/ also has a cyclic vector,
whence the von Neumann algebra M1/71/7 has both a cyclic vector and a.
separating vector.

Now the two von Neumann algebras M1/71/Y and M'/7! both have
cyclic and separating vectors, and, by Theorem 2.1, they are isomorphic von
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Neumann algebras. It then follows from Corollaries 1.13 and 1.14 of Chapter
V of [tak] that these von Neumann algebras are spatially isomorphic, whence
the representations D/71/7 and D'/7! would be unitarily equivalent. This
contradicts Theorem 2.1, and the proof is complete. -

Remark. Of course this theorem implies Theorem 1.3.

[aus]
[barg]
[fol]
[jan]
(klep)
[per]

[tak]
(zys]
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