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1. Preliminaries. This paper is a continuation of papers [8] and [9],
and is based on their terminology. We work in the PL-category (our
results are valid for Diff-category without any changes). We classify all
effective Z,-actions on 8%- and P?-bundles over §', proving that they are
standard (Definition 1.1). We use the recent results of W. Meeks III,
S. Yau, and W. Thurston.

Let N denote a nonorientable §*-bundle over 8!, B a Klein bottle,
and Bs a solid Klein bottle. Let

8 = {21,2, €C: 23> + |2,)* = 1}
and assume that

P = 83/'\‘, (zu zz) N(—zu _zz)r

8 ={zeC, veR: |2)+a® = 1};
P’=8~, (2,8)~(—2,—x), 8" ={z€0: |z| =1}.

Let g, (where h is taken modulo #) be defined by

h
I(n,n)* 88, I m(2) = e mihin g,

The same notation is used for

(a) Gt 8 - 8, Jiny (215 29) = (™" 2y, 25);

(b) Gin,py: 8 — 82, Iy (2, ) = (™M 2, x);

(€) Gun: P*— P and g, : P* — P? are determined by (a) and (b),
respectively.

LetC: 8 - 8% C(z,2) = (2, —x),and Cy: §* - 8, Co(2, ) = (Z, ).
Let A denote the antipodal map.

1.1. Definition. Let M = §' X F = RXF|~, (1, y) ~(t+1, o(¥)),
be an F-bundle over §', where F is a manifold and ¢ i8 a self-homeomor-
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phism of F. An action of Z, (generated by T') on M is said to be standard
if it may be described by one of the following expressions:

1. T(t,y) = (t+14/s, go(y)), where g, is a self-homeomorphism of F,
g divides n, 0 < ¢ < 8, (¢, 8) = 1 (i.e., 7 and s are relatively prime), g¥ = ¢",
and g, = ¢g,. We shall call such an action a standard action of type
(1; n, 8,1, go)p-

2. T'(t,y) = (l—t, go(y)), where » i8 even, g, generates a Z,-action
on F, and ¢g, = go¢~'. We call such an action a standard action of type

(2; ”’ gO)w'

1.2. Definition. Two G-actions u,, u,: G X M — M are called weakly
conjugate if there exist a group automorphism A: G — @ and a self-homeo-
morphism f: M — M (f preserves orientation if M is orientable) such that
p1=Jfus(Axf). If A is the identity, then u, and u, are conjugate.

Let Iz(M) denote the set of points with nontrivial isotropy group
(for a given @-action on M). Let & denote some class of actions. Then
& () (respectively, £,(s/)) denotes the number of actions in & up to
conjugation (respectively, up to weak conjugation). Let ¢(n) denote
the cardinality of the set of all natural numbers relatively prime to s,
less than %, and let [»] denote the integer part of .

The following statement (cf. [1]) seems to be a “folklore” result
(up to the Smith Conjecture):

1.3. PROPOSITION. Let a group G act effectively on 8* and assume that
either (a) or (b) holds:

(a) G = Z,, and Fix(T?) # O, where T is a gemerator of the action;

(b) G = Z,DZ, and Fix(T*) +# O, where T 18 a generator of Z,, .

Then such an action of G is conjugate to an orthogonal action.

1.4. LEMMA. Each effective action of Z,DZ, on S° is conjugate to an
orthogonal action. That i3, each action takes one of the following forms (for
some generators T, and T,):

(1) T1(21y 22) = (—21y —23); T(21,22) = (21, Z2);

(i) T'1(21, 22) = (—21, —23)y Ta(21y22) = (21, —%3);

(iil) Ty(21y 25) = (—21y Z5)y Ta(21y %) = (—21y 22);

(iv) T'y(21, 22) = (—21, 2Z5); Ta(21 22) = (21, —22);

(V) T'1(21y 22) = (—21y 22)y T2(21,22) = (24, 2);

(Vi) T'1(21y 22) = (—21y 22)y T2(21y 22) = (24 %a)-

Proof. Some element T of Z,®Z, satisfies either (*) Fix(T) = 8! or
(**) Fix(T) = 8°. Otherwise, there exists a free action of Z,®Z, on §*
with holes and, consequently, there exists a 3-manifold with fundamental
group equal to Z,®Z,, which is impossible. Now, we consider two pos-
sibilities:
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(*) Fix(T) = 8'; we divide 8°® by T. Let T, be a second generator
of Z,® Z,. The generator T, determines the involution on (8*, §8')
= (8%, Fix(T))/T. Involutions on §* are classified (see [4] and [5]). Simi-
larly, we can classify involutions on (8, §'), where §' is unknotted. There-
fore, we complete easily the proof of Lemma 1.4 in case (*).

(#*) Fix(T) = 8*; we divide 8* by T. Let T, be a second generator
of Z,®Z,. The generator T, determines the involution on (D?*, éD%)
= (8*, Fix(T))/T. Involutions on D? (and (D?, 0D%)) are classified. Using
this classification, we complete the proof in case (*x*).

Outline of the proof of Proposition 1.3. It follows from the:
Smith Conjecture (just proved by W. Thurston) that T? is conjugate to an
orthogonal action. We divide §* by the cyclic action generated by T? to
obtain 8 with an involution or with a (Z,@Z,)-action. Now we use the-
orems of Livesay or Lemma 1.4.

We will consider several cases. Let T preserve orientation. T' determines.
an orientation-preserving involution T, on (8, 8') = (8°, Fix(T%)/T*.
We have the following possibilities:

(i) Fix(T) # @. Then Fix(T) = Fix(T?) and it follows from the-
Smith Conjecture that T'(z,, 2;) = (gan,n)(21), 22)-

(ii) Fix(T) = @. Then T and T, act freely on Fix(T?) and S;, respect-
ively; we have two possibilities:

(j) Fix(T,)is a circle. Then Tz, 2,) = (2,, —2;) and we may assume:
that 85 = {2,, 2, € §*: 2, = 0} (we analyze the involution T, on $*-int(X),.
where X is an invariant regular neighborhood of §;, and we use the-
fact that each involution on 8'x D* with Fix(:) = 8" is standard [11])..
Thus it follows easily that T(2, 2;) = (g(an(21), —2,), Where n is odd.

(3j) Fix(T,) = 9. Then Ty(2,, 2,) = (—2,, —2,) and we may assume:
that 8; = {2;,2,€8: 2, = 0}. Now we infer easily that 7T(z,,2,)
= (9(2n,h) (1), zz)-

Similarly (but with more complications) we may proceed with other:
cases of Lemma 1.3.

1.5. CorROLLARY. Let T be a gemerator of an effective Z,-action on
I x P%. Then we have one of the following possibilities for T (up to conjuga-
tion):

1. T preserves the components of d(I x P*): T = 1d X gy, p)-

2. T reverses the components of d(X X P?):

(@) T = AXgppn, ® 18 even, (n, k) =1;

(b) I' = A X gianyy /2 18 odd, (n/2,h) = 1.

Proof. Let p: I x 8 — I xP? denote the universal covering. Let T,

be the covering transformation. We can lift T to T: I x §* — I x 8% and
assume that T preserves orientation (T, reverses orientation and Tis
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determined up to 7). It is easy to see that ‘T commutes with 7',. Since T,
reverses and T' preserves orientation, we infer that * = 1 and {7, T,}
generates the action of Z, ®Z, on I x §°. This action can be extended to
S8* in an obvious way. Now Corollary 1.5 follows from Proposition 1.3.

1.6. LEMMA. Let T generate the action of Z, on F and let (F', T') be a set
of equivariant self-homeomorphisms of F (up to an equivariant isotopy).
Then:

(a) if F = 8 and T is equal either to g, or to JinmC (n 18 even)
or 10 g2 C (#/2 is odd), then (8%, T) is generated by Id and C (and if
n = 2, we must possibly adjoin C, and C,C);

(b) if F = P* and T = g, then (P*, T) is generated by Id (and C,
if n =2)

The proof is easy and we omit it.

The recent results of Meeks IIT and Yau [7] imply the following

1.7. THEOREM. Let a finite group G act effectively on 8' X F (F = §*
or P?). Then there exists an embedding F=s8' X F such that g(F)NF =@
or F for each g € G, F is in a general position with respect to 1z (S* x F), and
F does mot separate S' x F.

2. Actions of Z, on §' X 8.

2.1. THEOREM. Each effective action of Z, on M = §' x S* (generated
by T') takes one of the following forms (up to conjugation). Each of the cases
L1(a)-II(i) describes exactly ome class of weakly conjugate actions (unless
otherwise specified).

I. Actions on 8' x §°.

1. Actions which preserve oriemtation:

(a) Actions of type (L; m, 8, %, g n)a) where 0 <h<j = n/s, (j, h)
= 1. Two such actions, for s = s8',8",i =1i',4", and h = b, ", are weakly
conjugate iff 8" = s’ and there exists a natural number a such that

i'" =ai or a(s—i') (mods) and k" = ah’ or a(j—h') (modj).

If a = 1, then the actions are conjugate. For given 8 we have

¢ () = [fp(s)2+1 ][ w(j)2+1 ]’ (@) = [‘P(g-c.d.(zs,j))-l-]_].

Each class of actions (up to weak conjugation) contains &4(a))/é,((a))
actions, up to conjugation. Moreover,

. L %] if s =mn,
M* = M/Z, = 8'x &, Iz(M) = o
Fix(T*) = §8' u8' i s<m.
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(b) Actions of type (13m,8,%,CoC)yq,y, where n = 2s. Two such
actions, for i =i, ", are conjugate iff i’ = i’ or 8 —1i'; hence

£, ((b) = [2(—8)2""—1], M* = 8'x &, TIa(M) = Fix(T®) = 8.

(c) Actions of type (2; n, i, 4 C)1a) where n is even and (n, h) = 1.
Two such actions, for b = h' k', are conjugate iff b = h' or n—h'; hence

alo) = [ 252 e -,

Iz(M)=l0 Tn=2 ) poup

Fix(T?) = S'U 8  if n>2,

(d) Actions of type (2; My 9(nj2,n)C)1ay Where n[2 is odd and (n/2, h) = 1.
Two such actions, for h = h', h'’', are conjugate iff B = h" or nj2—h;
hence

1°5Q _
&o((d)) =[M], Fix(T) = ls v am =2

2 % if n>2,
B - |FEO — 8o ifn=2,
| Fix(T™?)u Fix(T?) = 8'uS' US'U S if n>2,
M* = 8.

(e) Actions of type (2; %, ginnO)ye,1)s Where n i3 even and (n, h) = 1.
Two such actions, for h = k', h"’, are conjugate iff "' = h'y,n—h', b’ F n/2
or n—(h'F n/2); hence

¢(n/2)+1] . {S‘ if n =2,
= | — R =
Fix(T) = & ifn =2,
Iz(M) = | Fix(T"?) UFIx(T?) = ' US' US'  if n>2, n/2 is odd,
Fix(T?*) = 8* v if » is a muliiple of 4,
w* — P if n/2 is odd,
P*H#P*  if n is a multiple of 4.

2. Actions which reverse orientation:
(a) Actions of type (1; n,8,%, 94 nC)1ay where 0 < h<mfs =j,
(j, b) =1, and n i3 even. Two such actions, for s = 8',8"', i =1',i’, and

€ — Colloquium Mathematicum 47.2
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h = 1, 1", are weakly conjugate iff 8’ = s’ and there ewists a natural number
a such that

ol

i =ai’ or a(8—i') (mods) and h" =ah' or a(j—h') (modj).

If a = 1, then the actions are conjugate. We have

1 ) +1 .c.d.(s,) 1
o =[] s o - [t 22)

Each class of actions (up to weak conjugation) contains £&,((a))/£,((a))
actions, up to conjugation. Moreover,
] ifj=1or (j =2 and s i8 odd),
Iz(M) = | Fix(T%) = 8' U8 if j>1 and s is even,
Fix(T*) = 8' U8 if j>2 and 8 i3 odd,
- N if 8 18 even,
S'xP*  if & is odd.

(b) Actions of type (1; m, 8, ¢, Co)ye,1yy where n = 28 and ¢ 8 odd.
Two such actions, for ¢ = ¢,4"’, are conjugate iff i" =i’ or s—1i'; hence

q(m) = [ 2] mxem o,

8 OS if 8 is even,
B of 8 18 odd,
u* — .N if 8 ts even,

Bs if s 18 odd.

Iz(M) = Fix(T*) =

(c) Actions of type (1; m, 8,4, ginj2,nC)as where 8 and n(2s are odd,
0< h<n/28 =3j/2, and (j/2,h) = 1. Two such actions, for s =s’,s”,
t=1,1",and h = k', h", are weakly conjugate iff s’ = s’ and there exists
a natural number a such that

i =ai’or a(s—14) (mods) and k' =ah' or a(j/2—H) (mod j/2).

If a = 1, then the actions are conjugate. We have

£l(e) = [¢(8)2+1 ] [ tp(j)2+1 ] and & (o) = [sv(g-c-d-(s,j))+1 ]
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Each class of actions (up to weak conjugaiion) contains Ec((c))/ Sw((c))
actions, up to conjugation. Moreover,

Fix(T"?) = 8" x 8! if n = 2s,
IZ(M) = . . 1 " o 1 o .
Fix(T?%) UFix(T"?) = ' x 8' v US'  if n > 2s,
M* = D' x D*.

() Actions of type (2; m, ginn))ia) where n is even and (n,h) =1.
Two such actions, for h = k', k', are conjugate iff " = b’ or n—h'; henec

£,(() = [%], Fix(T) = 4 points,

4 points if n =2,
Fix(T*) = 8'us if n>2,
M* =<0,1)x8|~, (i,2) ~(i,gey(@) (=1,2).

(e) Actions of type (2; ny Ginjo,ny)1ar Where n(2 is odd and (n/2, h) = 1.
Two such actions, for h = W', k", are conjugate iff B’ =h' or n/2 —1';

TIz(M) =|

hence
_[en)+1 : (U8 ifan=2,
&e)) = [—’2_—]’ Fix(T) = {4 points  if n>2,
Fix(T) = §8* US? T
To(M) — ix(T) v o o ifn =2,
Fix(T?) UFix(T™?) = (8 USY) U(S82US®) if n > 2,

M*= (0, 1) x 8.

(f) Actions of type (25 My Ginn))o2,1)s Where n is even and (n, h) = 1.
Two such actions, for h = k', k", are conjugate iff B’ = k', n—h'y, B'F n/2
or n—h'F n/2; hence

fc((f)) = [MH'_I_], Fix(T) = {2 points US ifn =2,

2 4 points if n>2,
Iz (M)
Fix(T) = 2 points U §* if n =2,

— | Fix(T?) UFix(T™?) = (8 US) US®  if n2>1 and n/2 is odd,
Fix(T?) = 8 U if m is a multiple of 4,
*

[0,11%x 8%/ ~, (1, &)~ (1, g, (@), if n/2 is odd,

[0,1]x 8/ ~, (i, ®)~ (i; gp,y (@) (i=1,2), if n is a multiple of 4.
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II. Actions of Z, on 8' X 8* = N:

(a) Adtions of type (1; n, 8,4, g4 C)c, where 8 and i are odd, 0 < h
< n/s = j, and (h,j) = 1. Two such actions, for 8 = 8',8", i =1',4", and
h = 1/, k", are weakly conjugate iff 8’ = 8’ and there exists a natural number
a such that

" =ai' or a(8—i') (mods) and R =ah’ or a(j—h') (mod j).

If a = 1, then the actions are conjugate. We have

(@) = [w(s;+1 ][¢(j;+1]’ o ((a) = [‘P(g.c-d.(zs,j))-}-l].

Each class of actions (up to weak conjugation) contains £,((a))/&,((a))
actions, up to comjugation. Moreover, we have Iz(M) = Fix(T®) = §'
and M* = N.

(b) Actions of type (15 m, 8, %, gu,1)Colc,, Where n = 23, and 8, are
odd. Two such actions, for i = i',i", are conjugate iff i’ = i'; hence

£,((b)) = ["’—(”?—1], Iz(M) = Fix(T*) = 8'US', M* = N.

(¢) Actions of type (1; my 8, ¢, Ginn))os Where 0 < h < mfs = j, j i8 even,
i i8 odd, and (j, h) = 1. Two such actions, for 8 = 8',8", i =4',4’, and
h =h',h’, are weakly conjugate iff s = s and there exists a natural
number a such thai

i =ai’ or a(28—i') (mod2s8) and B’ = ah' or a(j—A') (modj).

If a = 1, then the actions are conjugate. We have

£.((0) = [ «p(282)+1 ][sv(j;+1]’ £u((0)) = [q»(g-c.d.(gs,j))ﬂ}

Each class of actions (up to weak conjugation) contains &,((c))/&,((c))
actions, up to conjugation. Moreover,

o N
Iz(M)=| TI=2 e gxp.

Fix(T%) = &' if j # 2,

() Actions of type (15 m, 8,4, guon)cy Wwhere 0 <h<nfs =j, j/2
and ¢ are odd, and (n/2, k) = 1. Two such actions, for s = &' 8", i =1i',4",
and b = k', "', are weakly conjugate iff 8’ = s' and there ewists a natural
number a such that

i =ai’ or a(28—i') (mod 28) and K" = ah' or a(j—h') (mod j).
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If a = 1, then the actions are conjugate. We have

] .c.d.(2s, ]
£, ((d)) =[¢P(2s)+l][¢(3)+1]’ £.((d) =[<p(gc (28 ]))+1].

2 2 2

Each class of actions (up to weak conjugation) contains &.((d))/&, ((d))
actions, up to conjugation. Moreover,

Fix(T™?) = &' x & ifji=2,
Iz(M) = M* = 8'x D?.
Fix(T™?) UFix(T®) = §'x §' U if j>2,

(e) Actions of type (1; m, 8,4, Cy)o, where n = 28, and 1 is odd. Two

such actions, for ¢ = ¢',i"’, are conjugate iff " = i’; hence
p(n)+1
() = [ 25,

8'x 8" if s i8 even,

1z(M) = Fix(T*) = M* — Bs.

B if 8 18 odd,

(f) Actions of type (2; n, gnz))os where n is even and (n, h) = 1.
Two such actions, for h = W', k', are conjugate iff B = k' or n—h'; hence

£ ((f) = ["’("T)“], Fix(T) = 2 points,
Fix(T) = 2 points if n = 2,

La(M) = |Fix(T2) — & if n>2,

M* = <0, 1>XS2/~a (0, ) ~(079(2,1)(w)) and (1,2)~ (1, —a).

(8) Actions of type (25 ny Ginj2,n))cs Where n[2 and h are odd, and (n/2, h)
= 1. Two such actions, for h = k', k", are conjugate iff h"' = h'; hence

_Jen)+1 . _ 808 if » =2,
Ec((g)) - [—2—_]’ Fix(T) = {2 points  if n>2,

Fix(T) = 82U ifn =2,

Iz(M) = M* = D

Fix(T*) UFix(T™?) = §' U(§* USY) if n> 2,
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(h) Actions of type (2; n, g(,,,,,)G)ﬂ(z o Where n/2 i8 odd and (n/2, h)
= 1. Two such actions, for h = b', h"’, are conjugate iff b’ = h' or n—h’;
hence

_[em)+1 o _ [ i w=2,
fc((h>)—[—2——]’ P =\3 points if n>2,

Fix(T) = §° if n =2,

Iz(M) = M* = P # D°.

Fix(T?) UFix(T"?) = S'US®  if n>2,

(i) Actions of type (2; n, g(n,,,)),(z HC? where n i3 even and (n, h) = 1.
Two such actions, for h = k', h”, are conjugate iff K’ = h' or n—h'; hence

(1) = [M], Fix(T) = {2 points US'  if n =2,

2 2 poinis if n>2,
Fix(T) = 2 poinis U S* if n=2,
Iz(M) = { Fix(T?) UFix(T"?) = 8'U 8" if n>2 and n/2 is odd,
Fix(T?) = &' if m is a multiple of 4,

0,1) X 8/ ~, (0,2) ~ (0, g, (@) and (1,2) ~(1, C(x))

if n/2 18 odd,
0,1)x 8%/ ~, (0, ) ~ (07 g(z,lp(w)) and (1,2) ~ (1, A(m))

if n|2 is even.

M* =

Proof. Since the proof of Theorem 2.1 is similar to that of Theorem
6.5 in [9], we give only its outline. It follows from Theorem 1.7 and Corol-
lary 4.3 in [8] that each Z,-action on §' X §* is obtained by using a mul-
tiple or a connected sum for F,= 8. We have the following possibilities
(we use the terminology of 3.1 and 3.2 from [8]):

I. Case of multiple. We deduce from the formulas in Section 3.5
of [8] that

(8' % 8, Z,) = ([0,1]X 8, g)(s{o}xsz,{l}xs2,f,r) and j,=1

(see Definition 3.2 in [8]).

Since g, extended to §°, has at least 2 fixed points, we infer, using
Proposition 1.3, that g is equal either to Id X Gnyny O to Id X Gny. 0 Oy
or to Id X g, /2,1 C. Now we study these possibilities:
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Possibilities for f, up to |Actions described in particular
Possibilities for ¢ equivariant isotopy (see subcases of Theorem 2.1
Lemma 1.6)
1. g = Id X g(n,,h) f=1d I.1(a) (by Lemma 2.2 in [9])
f=0 I1.2(a) or Il(a)
f=0pn =2 1.2(b) or II(b)
2. 9= 1d X g(n;,m0 f=I1Id or O I.2(a) or Il{c)
f= 0y or 0,0 no new actions
3. 9= Idxg(nl,z,;,)o f=1d or O I.2(¢c) or II{(d)
f=0y0r 0,0,n = 2 £.2(b) or II(e)
(80 g = Id x 0)

II. Case of connected sum. We deduce from the formulas in Sec-

tion 3.5 of [8] that

(8 % 8, Z,) = (0, 1) X 8%, T) Fryoyxst,opxsty (<0 1) X 82, T)

and 8, = 8, = 1, j, = 2 (8ee Definition 3.1 in [8]). It follows from Prop-
osition 1.3 that T, (and also T';) is equal either to 4 X g, 5 C or t0 A X g, -
or t0 A X ginje,nC, Or 10 A X gnjo,y- We may assume that f =1Id up te
equivariant isotopy. We have the following possibilities:

Possibilities for T, and T, ‘;‘fr‘t‘;’;;l:f“‘;ﬁgzgsg
of Theorem 2.1
1. T) = Ty = A X gnn0 I.1(c)
2. Ty, = Ty = AXgnn 1.2(d)
3. I, =Ty = AXx ngl;,)G 1.1(d)
4. Tl = Tz = A x 9(n/2,h) I.2(e)
5. Ty = AXgnn Tog= 4X 9(n.n) 0 II(f)
6. T, = Ax Ini2,n)s Tp = 4 x 9(n/2,n)0 II(g)
7. T, = Ax 9in,n) 0, Tp = A x g(n/g,(hq:n/z)/z)o (n/2 is odd) I.1(e)
8. Tl = A X 9(n,h)» Tz = AX g(n/2,(h=Fn/2)/2) (n/2 is Odd) I.2(f)
9. T, = A x IO, Ty = A x 9(n/2,(AFn/2)/2) (n/2 is odd) II(h)
10. T} = A X gn,n)> Tg = A X I(n/2,Fns2)2)0 (n/2 is odd) II(i)
11. Ty = A X gn,n)0, Ty = A X g(n,h5n/2)0 I.1(e)
12. T, = A x 9in,k)s Tg = A X g(n,n5n/2) I.2(f)
13. T) = A Xgpuny Tg= A X I(n,hEns2) O II()

To complete the proof of Theorem 2.1 it remains to verify the fol-
lowing:
I. Actions described in distinet subcases I.1(a), ..., II(i) of Theo-
rem 2.1 are not weakly conjugate.
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II. The actions in each subcase of Theorem 2.1 are well classified.
The proof differs in details from that of Theorem 6.5 in [9] and will be
omitted.

3. Actions of Z, on §8' x P2,

3.1. THEOREM. Each effective action of Z, on M = 8' x P* (generated
by T) takes one of the following forms (up to conjugation). Each of the cases
(b)-(e) describes exwactly one class of weakly conjugate actions.

(a) Actions of type (1; n,s, z,g(“h))ld, where 0< h<j =mn/s and
(j, ») = 1. Two such actwns, for 8 =8,8i=14,i, and h=n',h",
are weakly conjugate iff s’ = s’ and there exists a natural number a such
that

i =ai’ or a(s—1%) (mods) and A’ =ah' or a(j—Ar') (mod j).

If a = 1, then the actions are conjugate. For given 8 we have

' c.d.(s,§)+1
0 <[] e g [t

Each class of actions (up to weak conjugation) contains &(a))/é, ((a))
actions, up to conjugation. Moreover,

(] "«f] =1,
Iz(M) = {Fix(T?) = 8" if j>1 and j is odd,
Fix(T*) UFix(T*?) = 8' US'x 8  if j is even,

. S'xP® if j is odd,
| 8'xD*  if § is even.

(b) Actions of type (1; n, 8 1, Oo)y(2 y? Where " = 23 and ¢ i8 odd.
Two such actions, for i = i',i’, are conjugate iff i =i or s—i'; hence

(o) = 25,

o]
S*uSx 8t if 8 is even,

o . M* = Bs.
S'UB if 8 is odd,

Iz(M) = Fix(T®) = l
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(e) Actions of type (2; n, I, n)iay Where (n, h) =1 and n i3 even.
Two such actions, for h = k', h”’, are conjugate iff B’ = b’ or n—h’; hence

£ ((c)) = [‘P(_n)t_l_]’ Fix(T) = {S‘ U8 U2 points  if n =2,

2 2 poinits if n>2,
Fix(T) = 8' US' U2 points if n =2,
Iz (M) = {Fix(T?) UFix(T"?) = 8L S ' US' if n>2 and n/2 is odd,
Fix(T"?) = §* U8 x §* if n i8 a multiple of 4,

. D' x P ~, (i,z)N(i,g(z,l)(z)) (¢t=1,2), if n/2 i8 odd,
"X D*|~, (i,2)~ (1, —2) (1 = 1,2), if n 18 a multiple of 4.

(d) Actions of type (25 Ny Gnjo,n))1a) Where n[2 is odd and (n/2, k) = 1.
Two such actions, for h = k', b”’, are conjugate iff ' =h' or n/2—h';

hence
o(n)+1 _ _:P’QP” if n =2,
& )_[ ]’ Fix(T) = 2 points if n>2,
F. T — P2 °P2 . — 2
oy = | L) =Py . Yn=2 1 _ pixp.
Fix(T"?) UFix(T?) = (PPUP}) uS' if n>2,

(e) Actions of type (2; n, g(n h))‘,(2 ! where n 18 even and (n,h) = 1.
Two such actions, for h = k', "', are conjugate iff K’ = b’y n—h'y K'F n/2
or n—h'F n/2; hence

£((e)) = [M]’ Fix(T) = {S VP*Ul point  if n =2,

2 2 points if n>2,
Fix(T) = §' UP? U1 point if n =2,
Iz(M) = {Fix(T?) UFix(T"?) = (' USY YU P? if n> 2 and n/2 is odd,
Fix(T"?) = 8* U8 x & if n is a multiple of 4,
M — [0,1]xP*/~, (1,2)~ (17 9(2,1)(2))7 if n/2 is odd,
[0,1]1X D/ ~, (i,2)~ (i, —2) (i =1,2), ifn isa multiple of 4.

The proof of Theorem 3.1 is similar to that of Theorem 2.1 (apply
Corollary 4.4 from [8], Propositions 3.5, 3.6 from [8], Corollary 1.5, Lem-
ma 1.6, and Theorem 1.7) and we omit it.

I am grateful to Janek Hrabowski and Julek Rose for their help
in preparation of this paper.
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