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The famous theorem of Petersen [2] states that every cubic bridge-
less graph contains a 1-factor. Using different terminology, we may re-
phrase this result as follows:

Every 3-regular, 2-edge connected graph contains a 1-factor.

It is also the case that every cubic graph with at most two bridges
containg a 1-factor or, equivalently, every 3-regular, 1-edge connected
graph containing at most two edge cut sets of cardinality 1 contains a 1-fac-
tor. With this strengthening of Petersen’s theorem at hand, we propose
to present a further generalization in this article.

A 1-factor of a graph @ is a 1-regular spanning subgraph of G. A well-
-known characterization of graphs containing 1-factors is due to Tutte [3]:

A graph G has a 1-factor if and only if, for every proper subset S
of the vertex set of G, the number %,(G — 8) of odd components of G — 8
does not exceed the cardinality of 8.

An edge cut set of a connected graph @ is a set of edges whose deletion
from G results in a disconnected graph. A graph G is n-edge connected
if there exists no edge cut set of eardinality less than n.

We are now prepared to present our main result.

THEOREM 1. Let G be an (r —2)-edge connected graph (r > 3) of even
order such that

(i) degv = r (mod 2) for every vertex v of G;

(ii) 3'(degv—r) = 2x < 2r, where the summation is taken over all ver-
tices v of G whose degrees are at least r.

If the maximum number of pairwise disjoint edge cut sets of cardinality
r—2 in G is less than r —ux, then G contains a 1-factor.

Proof. Suppose, on the contrary, that G does not contain a 1-factor.
Then, by Tutte’s theorem, there exists a proper subset S of the vertex
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set of @ such that k(G —S) > |S]. Denote the odd components of G — 8
by G,,@G,, ...,G,, so labeled that the numbers a; of edges in G joining
G, and S are in non-decreasing order. Since G is (r—2)-edge connected,
a;>r—2 for each ¢ (1<t n).

Assume that the maximum number of pairwise disjoint edge cut sets
of cardinality » —2 in @ is j. By hypothesis, j < » —z. For each ¢, we note
that a; = r —1; for suppose that a, = r—1, say. Let the vertex set of
G, be {u;, usy ..., u,}. Then

(1) Zdegatu,- = Zdegau‘—(r —1) = (m—-1)r+4+1 (mod 2),
i=1 i=1

which is impossible since the right-hand side of (1) is odd and the left-hand
side is even. Therefore, a, > r—2 for all + (1 << < n) and a, > r for 7> j.
Thus, the number of edges joining G — 8 and § is at least

Za,. > j(r—2)4+(n—j)r = nr—2j.
in1

On the other hand, by hypothesis (ii), the number of edges joining
G — 8 and 8 cannot exceed kr-+2x, where k = |S|. Hence,

nr —2j < kr +2x,

which implies that (n—Fk)r < 2j+42x and that n—k < (2j + 2z)/r. Since
j<r—x, we have n—k < 2; however, » >k so that n = k+1. This
shows that the cardinalities of the sets § and {G¢,, G,, ..., @,} are of oppo-
site parity, which contradicts the fact that G has even order.

Later we shall discuss the sharpness of the result given in Theorem 1.
At present, however, we consider a consequence of this theorem.

The degrees of the vertices of the graph G of Theorem 1 may have
any of the values r —2, r, r+2, r 44, ete., provided that >'(degv —r) < 2r,
where the summation is taken over all vertices v whose degrees are at
least r. If only vertices of degree r are allowed, then we have the following
corollary, which gives an alternative proof of a result by Chartrand and
Nebesky [1].

COROLLARY 1la. If G 18 an r-regular, (r —2)-edge connected graph (r > 3)
of even order containing less than r distinct edge cut sets of cardinality r—2,
then G contains a 1-factor.

For r = 3 the preceding result yields the following statement:

COROLLARY 1b. If G is a cubic graph containing at most two bridges,
then G has a 1-factor.

If @G is an (r—1)-edge connected graph (r > 3), then @ is also (r —2)-
edge connected and has no edge cut sets of cardinality r —2. Therefore,
Corollary 1a has the following consequence:
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COROLLARY 1lc. Every r-regular, (r —1)-edge connected graph (r = 3)
of even order contains a 1-factor.

Specializing Corollary 1lc to » = 3 returns us to Petersen’s theorem.
COROLLARY 1d. Every cubic bridgeless graph contains a 1-factor.

For each r > 3, Corollary 1la is the best possible in the following
sense. Let r be given. For r even, write

H, = [(r—2)/2]K,V(3K,),

i.e., H, consists of (r—2)/2 copies of K, and 3 copies of K,. For r odd,
write

H, = P,UK,,

where P, denotes the path of order r. For r even or odd, put @, = H,,
the complement of H,. Construct a graph G by taking r copies of @,,
a set 8 of r—2 vertices, and r(r —2) additional edges, namely r —2 edges
joining the r —2 vertices of degree r—1 in @, to the vertices of §, in a one-
-to-one manner, for each of the r copies of @, in G.

The resulting graph @ is r-regular, (r —2)-edge connected and contains
r edge cut sets of cardinality r—2. However, k(G —8) = r while |§| =
r—2, so that, by Tutte’s theorem, G does not contain a 1-factor. Thus,
if we increase the number of edge cut sets of cardinality » —2 in the sta-
tement of Corollary 1a, then we cannot be assured that G contains a 1-fac-
tor. For » = 3 and r = 4, the graphs @ so constructed are shown in Fig. 1
(a) and (b), respectively.

(a) (b)
Fig. 1

If r is even, the graph G constructed to illustrate the sharpness of
Corollary 1a has order r24-2r—2; while if r is odd, then G has order
r24-3r —2. These examples are, in a sense, the best possible. In order to
verify this, we present the following result:

THEOREM 2. Let G be an (r —2)-edge connected graph (r = 3) of even
order p such that degv > r for every vertex v of @, and let 2a = D(degv—r),
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where the summation is taken over all vertices v of @. If

(2) p< (r—a;)(2 :%}+1)+max{1,r—2—m},

then G has a 1-factor.

Proof. First we note that 2z is an even integer, since )'degv = pr+
+2z, and Ddegv and pr are both even. Hence x is an integer. Further,
inequality (2) implies that =z < r—1.

Assume, on the contrary, that G has no 1-factor. As before, there
exists a proper subset S of V(@) for which

n = ko(@G—08) > |8] =k,

where the odd components of G —8 are G4,@G,, ..., G,. It follows that
n # k+1, since, otherwise, the cardinalities of the sets § and {G,, @,, ...
..., @,} are of opposite parity, which is impossible because p is even.
Therefore, n > k2.

Let a; (1 <4< n) denote the number of edges joining G; and 8. We
claim that if |V(Gy)| = r—¢ for 0 < ¢ < r—1, then a; > (r—t)(¢t+1). This
follows because every vertex v, of G, is adjacent with at most r—¢—1
vertices of G; and, therefore, adjacent with at least {41 vertices of S,
since degv > r for all vertices » of G. Therefore, a; > (r—1)(t+1), as
claimed. In particular, since (r —#)(¢-+1) = r for 0 < ¢ < r—1, we conclude
that if |V (G,)| <r, then a;,>r.

Let m denote the number of odd components G; of G — 8 for which
{V(G,)| = r+1. (Note that, since each G; has odd order, if » is odd, then
V(@) =r+1 implies |V (G;)| = r-+2.) Therefore,

(3) da= Y a+ Y «

i=1 IV (@)I<r IV(@)I=r+1
= r+ 2 (r—2) =nr—2m.
V@)<r I7(Gy)l=r+1

Further, it follows that

n

(4) Za,- < Zdeg'v < kr+2z.

t=1 veS
Thus, from (3) and (4) we obtain
nr—2m < kr+2«x

or
(5) mz=r—uzx,
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since n > k+2. Now, by (4),

fr+20> D' a;>n(r—2) > (k+2)(r—2),
[£ )]

so that
(6) k>r—2—um.
Hence, for r even, by (5) and (6) we have
pz2m(r+1)+k>= (r—a)(r+1)+max {1, r—2 —x},
which contradicts hypothesis (2); while, for » odd, we have
p=m(r+2)+k>= (r—2)(r+2)+max{1,r—2—z},

which again contradicts (2).

If the graph @ of Theorem 2 is r-regular, then we have the following
result:

COROLLARY 2a. If G i3 an r-regular, (r —2)-edge connected graph (r = 3)
of even order p such that
r24+2r—2 if r is even,
(7) p< {r2+3r—2 if 7 is odd,
then G has a 1-factor.

Proof. Applying Theorem 2 for G r-regular, we see that x = 0 and
max {1, r—2 —z} = r—2. Thus, by (7), we have (2).

Thus, Corollary 2a shows that the examples presented to illustrate
that Corollary 1la is the best possible are themselves of smallest possible
order. Conversely, these examples show that Corollary 2a is the best
possible,

We now return to Theorem 1 and show that this result is sharp in
the following sense. Namely, we show that for each >3 there exists
an (r—2)-edge connected graph G of even order, satisfying hypotheses
(i) and (ii), having exactly r —x distinct edge cut sets of cardinality r —2,
and not containing a 1-factor. Furthermore, the degrees exceeding r can
be specified as can the number of vertices of degree r —2, and G can be
constructed to have these added properties.

Let @, denote the graph defined in the example following Corol-
lary la. To construct the desired graph G we consider two cases.

Suppose first that the number of vertices of G whose degrees are
to exceed r is at most r —2. To construct G, we begin with a set § of r —2
vertices. The graph @ also consists of pairwise disjoint graphs G, @G, ...
..., G; such that G; ~@, for ¢ =1,2,...,7r—x and G; ~ Q,—e¢ for any
t > r—a, where ¢ is an edge joining two vertices of degree r in @,. By the
definition of @,, such an edge e exists. Thus, for ¢ =1,2,...,r—, G
contains r —2 vertices of degree r—1, while, for any i > r —x, G; contains
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r vertices of degree r —1. All other vertices of @, @;, ..., G, have degree .
Now, fori =1,2,...,r, we join r—2 vertices of degree r—1 to the ver-
tices of § in a one-to-one manner. At this point, each vertex of § has de-
gree r. If degrees exceeding r have been specified, such vertices can be pro-
duced in S by joining the appropriate vertices of § to the 24 remaining ver-
tices of G;_,,,, ..., G, having degree r —1. The graph @ so constructed has
the desired properties. The sets of edges joining @; and 8 fori =1,2,...
..., r—x are the only edge cut sets of cardinality r —2. The graph G does
not have a 1-factor, since

ko(G—8) =r>r—2 = |8].

If 1 vertices of degree r —2 have been specified, where, necessarily,
! < r—u, then Gy, G, ..., G; may be contracted to single vertices, and then
the resulting graph has all the desired properties.

Next, suppose that the number of vertices whose degrees exceed
r i3 r —1. Then, necessarily, each of these vertices has degree r 42, and
x = r—1. In this case, the graph @ is constructed by beginning with a set
8 of r—1 vertices. The graph G also consists of graphs Gy, @,,...,Q,.,
with G, ~ @, and, for 2 < i< r+1, G; ~ G,—e¢, where ¢ is an edge joining
two vertices of degree r. Thus, G, contains r —2 vertices of degree r—1
with all others of degree r, while each of G;,G;, ..., G, , has r vertices
of degree r —1 and all others of degree . We now join the r —2 vertices
of degree r—1 in @, to r—2 vertices of S in a one-to-one manner. For
i =2,3,...,7+1, we join the r vertices of degree r —1 in G; to the ver-
tices of 8, and this is done in such a way that each vertex of § has degree
r+2. This is possible since the total number of edges between the graphs
G, @y, ..., G,,, and 8 is r2+r—2. This graph G has the required proper-
ties. The set of edges joining G; and § is the only edge cut set of cardinality
r—2. However, G does not have a 1-factor, since

ko(@—8) =r+1>7r—1 =|8].

If a vertex of degree r—2 is specified, then @; may be contracted
to a single vertex to produce a graph with the desired properties.
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