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ON o-COMPLETE PRIME IDEALS IN BOOLEAN ALGEBRARS
BY

KAREL PRIKRY* (MADISON, WISCONSIN)

Luxemburg [2] posed the following problem:

Does there exist a complete non-atomic Boolean algebra which has
a o-complete prime ideal?

He answered this question neqatively in [3] under the hypothesis
that there is no measurable cardinal. We prove that if a measurable
cardinal exists, the answer is positive.

We identify an ordinal with the set of smaller ordinals. Cardinals
are initial ordinals.

Definition 1. Let » be a cardinal. Measure u, defined on £(x),
is called a x-complete measure in 2 (x) if it satisfies the following conditions:

(a) for every X < %, either u(X) =0 or u(X) =1;

(b) u(x) =1 and u({a}) = 0 for every aex;

(c) for every sequence {A.|%eA}, if 1 <x and u(4,) =0 for each
&el, then u(lJ{d;|&eA}) =0.

% 18 a measurable cardinal if there is a x-complete measure in 2 (x).

LEMMA 1. Suppose that (P, ) is a partial ordering satisfying the
following condition:

(*) If p, ¢B and p non 3 g, then there is an r 3 p such that no seP
satisfies simultaneously s 3 q and s 3 7.

-Then there is a complete Boolean algebra (B, ) such that P is a dense
subset of B and the Boolean inclusion = in B is an extension of S in P.

Lemma 1 is a slightly amplified version of a statement in [6], p. 38.
There the word “complete’” does not occur in the conclusion. Lemma 1
is obtained by considering the minimal completion of an algebra, the
existence of which is asserted in [6]. We also remark that a set S < B,
is said to be demse in B, if for every beB, b # 0, there is an seS such
that s =0 and s 3 b.
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Definition 2. For any set A, [A]* denotes the set of subsets of
def

A of cardinality n; [A]°“ = U {{A]": newy}.

For any two finite sets of ordinals r, s, s means that r is an
initial segment of s with respect to the natural ordering of ordinals.
Also, r—r.

LEMMA 2 (Rowbottom [5]). Let » be a measurable cardinal. Then
there is a x-complete measure u in P (x) satisfying the following conditions:
(a) Suppose that u(A;) = 1 for each &ex. Then

w({(n1(VE < n)(nedp)}) = 1.

(b) Suppose that u(U) =1, A <x and f: [U]~“° — A. Then there is
a set V. < U such that u(V) = 1, and for every new,, f is constant on [V]".

Such a measure is said to be normal.
Proof. See [4], lemma 1.4, remarks 1.5, 1.6 and theorem 1.9.

Definition 3. Let » be a measurable cardinal and x a fixed normal
measure in #(»). From now on, P will be the set of ordered pairs {s, 4),
where se[%]~“, u(4) =1, and maxs < minAd. If (s, A>eP and {r, B)P,
we put {r,B) 3 (s, A) iff sc—r,B < A and r—s < A.

LemMMA 3. (B, 3) is a partial ordering which satisfies (*) of Lemma 1.

Proof. The first part is left to the reader.

Suppose that {s, 4>, {r, BYep and (r,B) non 3 (s, 4), i.e. the
premise of (*).

First of all, let us assume that for some (t, 0> B, (¢, 0> 3 (s, 4D
and {t,C) 3 (r,B). Then r—t and s—t. Hence s—r or r—s. In any
case, r—s8 < t—s < A. The last inclusion follows by (¢, C) 3 (s, 4)
and definition 3.

Thus, if r—s ¢ A, or s—r and r — s both fail, then ¢, C> =3 (s, 4>
and <t, C> 3 (r, B) cannot hold simultaneously. So if p, ¢ of Lemma 1 are
{r, B), {8, A respectively, we can take for r of Lemma 1 the p itself.

Therefore we can assume r—s < A, and either s—r or r—s. Let
us consider first the case s—r. Then B ¢ A, because otherwise {r, B)
= (s, A), contrary to our hypothesis. In fact, B¢ 4 U s, since s = r
and BnNnr =0. Choose a feB— (4 Us). Let B = B—{{|&< B} and
r" =r U {B}. It is easy to see that (»’, B’> 3 (r, B). It is claimed that
for no {t, 0> P do we have simultaneously (¢, C) 3 <, B") and {t,C)
= (s, A>. Assume to the contrary. Hence »' (= ¢, which results in fet.
This, together with the choice of 8, gives fet—s. From {¢,0) 3 (s, 4)
we get t—s < A. This implies feA, which is a contradiction.

Finally, suppose that » CZ s and not s — r. Because u(B) = 1, we can
choose a feB such that § > maxs. Put »' =7» U {f} and B = B—{&|¢&
< fB}. Hence

minB’ > f > maxs > maxr
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and u(B’) =1. It follows that {r’, B’>¢P and {r', B") 3 {r, B). Now
¢, 0y 3’y B’y and (t, C) 3 (s, A) cannot hold simultaneously. Other-
wise either s— 7' or r'—s. Since fer’ and f > maxs, the former has
to hold. But s = 7', together with ' = r U {8} and § > maxs, give s r.
This is a contradiction. Hence Lemma 3 is proved.

LEMMA 4. There is a complete Boolean algebra (B, ) such that P is
a dense subset of B and 3 in B is an extension of 3 in P. In what follows,
(B, 3) will be such an algedbra.

Proof. Lemma 3 and Lemma 1.
Definition 4. Let

S ={b|beB & (AV) (u(U) =1 & <0, U 3 —b)}.

LEMMA 5. For every beB there is an A such that u(A) = 1 and either
<0,A4>3bor0,A4A) 3 —b.
Proof. Put by = —b,b, =b. For + = 0,1 we put

8; = {s|se[x]~*° & (HU)(<s, U)eP & (s, U) 3 b)};
8, = [%]7°— (8, U 8)).

First of all, §o N §; = 0. If not, then for some s, seS; N §,. Hence
there are U,, U, such that u(U,) = u(U,) =1, s, U,y 3 b, and <s, U,)
=3 b,. Let U = Uy, n U,. Thus u(U) =1 and, consequently, (s, U)eP.
Clearly, <s, U) 3 <s, U;) for © =0, 1. By transitivity, (s, U) 3 b; for
i = 0,1. This is a contradiction, because b, A b, =0 and <{s, U) # 0.

By Lemma 2, there is a set A with the properties

(0) u(4) =1;

(1) for every mew, there is an 2+ = 0,1, or 2 satisfying [A]" < §;.

It is claimed that either (0, A> 3 b, or <0, 4> 3 b,. Suppose not.
Then there are by, b, such that b; A b, = 0 and b; 3 <0, A) for i =0, 1.
Because P is dense in B, there are (s;, 4;> 3 b; for ¢ = 0,1. Thus
(8iyA;> A by = 0,1.e. (s;, A;> 3 b,_;for¢ =0, 1. Hence s;¢8,_; for: = 0,1.

We can assume that |s)| = |s,] = k for some kew,. Because for
example, if |s,| < |s,|, we can find (s;, 4;> =3 (8o, 4oy such that [sy| = |s,].
Then we would consider {s,, 4,>, (s;, A,> instead of {sy, Ay), {81, A;).
To obtain such an sy, Ao>, let ay, agy ..., @15, De the first [s,/—|s,]
elements of A,. Put s, = 8 U {ay, az, ..., 515y} and 4y = A—{ay,
gy +eey Aoy isgl)-

Hence assuming |s,| = |s,| = k, we have [A]* N §, # 0and [4]* N 8§,
# 0. This, together with the disjointness of §; for ¢+ = 0, 1, 2, preclude
[A]* < 8, for any fixed ¢ = 0, 1, or 2. That contradicts the choice of A.
Hence either <0, A> 3 b, or <0, A) 3 b,, which proves the lemma.

LEMMA 6. For every be®B either beJ or —beJ. 1¢ 3.
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Proof. The first part is an immediate consequence of Lemma 5 and
definition 4. As for 1¢ J, assume to the contrary. Hence for some 4 < #,
u(4) =1 and <0, A 3 —1 = 0. This is impossible.

LEMMA 7. J 8 x-complete.

Proof. Suppose that b.e J, for each &£ < 1 < ». Then there are sets
A, < » such that u(4,) =1 and <0, 4;) 3 —b;. Let 4 = N {4,]|£eA}.
By the x-completeness of u, u(4) = 1. Obviously, <0, A> 3 <0, 4,) for
each &eA. Hence,

(0, A) 3 inf{0, A, |Eel} 3 inf{—by|Eed} = —sup{b|&ed).

Hence sup{b:|&ei}e J.
THEOREM 1. (B, ) 8 a mon-atomic complete Boolean algebra and
X 18 a x-complete prime ideal in B.

Proof. Let beB, b # 0. Then, due to the density of § in B, there
is an (r, A)eP such that {r, 4> 3b. Let ' =r U {mind} and A’
= A—{minA}. Then (', A") 3 <{r,A) 3 b and {r', A") # (r, A). Thus
&'y A 2 b and (', A" # b, which proves that B is non-atomic. The
rest follows from Lemmas 6, 7.

The following result is a slight strengthening of Theorem 1:

THEOREM 2. Every proper principal ideal in (B, 3) can be extended
to a x-complete prime ideal.

Proof. For each <{r, A) P, we let
B({ry Ad) = {b|beB & b 3 (r, A)}.
Clearly, (B(<r, A)), 3) is a complete Boolean algebra. We define
J(r, 4)) = {b[beB((r, 4)) & (AV) (u(U) =1 & <r, Uy 3 ry Ay—b)).

Similarly as in Theorem 1, it can be shown that J({r, 4)) is a »x-com-
plete prime ideal in (B ({r, 4)), 3).
Let beB, b =1 and

3 = {clceB & ¢ 3 b}.
The proper principal ideals of B are exactly such J,’s. Because
—b #0 an {r, A)eP can be chosen so that {r, A> 3 —b. We put
I ={clceB & (Hd, ¢)(de J, & e J(<ry AD) & ¢ = dve)}.

It is easy to see that J, =< J and J is a x-complete prime ideal.
We would like to prove one more result about B.

THEOREM 3. (B, 3) has no dense subset of cardinality x.

Proof. It is obviously sufficient to prove that (P, <) has no dense
subset of cardinality ». In order to do this, suppose that the sequence
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A = {8, A>|Eex} is a sequence of elements of P. Let

A = {n|(VE<n)(nedy}.

It follows immediately that A— & < A,— & By the normality of
u and Lemma 2(a), u(4) = 1. Let B < A be such that u(B) =1 and
|A— B| = ». Hence |A;— B| = x and, consequently, 4,— B # 0 for
each &ex. So for no £ex, do we have {s;, 4;> < {0, B). This means that
A is not dense in P. Because this is true for any A as defined above, the
theorem is proved.

Remarks. The hypothesis of the normality of u simplifies the con-
struction, but it is not necessary. An analogous construction can be
carried out for an arbitrary »-complete u. Instead of Lemma 2, we would
use Theorem 1.36, [4].

It is proved in [1] that if x» satisfies a certain condition stronger
than measurability, the following holds: In every »-distributive complete
Boolean algebra every x-complete proper ideal can be extended to
a x-complete prime ideal. See [1], Theorem 4.16 iv), p. 290, and Theorem
5.10, p. 304.

In [4], (P, ) is investigated in the context of forcing of P. Cohen.
The Boolean algebra (8, ), which is determined by (8, 3) up to isomor-
phism, is also studied in [4]. There, to obtain (B, ), we used a method
of [7]. However, the description of (B, ), as stated in [4], is too general
for the purposes of the present paper. The following theorem about
(B, ) was proved in [4]. Here we would like to prove it using the results
presented above.

THEOREM. (a) (B, ) 8 x-distributive, i.e. the (i, 2) distributive law
holds for each A < x.

(b) The (Ny, ) distributive law fails in (B, 3).

Proof. (a) This follows from Theorem 2, and Theorems 0.5, 0.6,
p. 236, [1].

(b) For each mew,, n %0, let {b5|fex} be an enumeration of
{<ry x> |re[x]"}. It is claimed that

(0) sup{b|Eex} =1 for each new,, n # 0;

(1) inf{b6;™ |n ew,} = 0 for every sequence {£(n)|new,} of ordinals < x.

(0) Suppose that for some newy, # # 0, sup{b’,|Eex} = b = 1. Hence
—b # 0 and therefore there is an (s, B)e such that <{s, B) 3 —b.
Similarly as in the proof of Lemma 5, we can assume that |s| > n. Let
y<a<...<a,<..<a, be the elements of s in increasing order.
Let r = {a;, a3y...,0,} and A = B U {a,,,, ..., a,}. Obviously (s, B)
3y Ay 3<{r,x). Now for some &ex, (r,x») =1b,. Hence (s, B)
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3 sup{b;|éex} = b. This gives <s, B) 3 bA (—b) =0, which is a con-
tradiction. This proves (0).

(1) Let (r, U)eP, new, and n > |r|. Then for some se[x]", b:™
= {8, ). It follows from |s| > || that {r, U) non 3 (s, x). Hence {r, U)
non 3 inf {b:™ |new,}. Because (r, U) was an arbitrary element of P and
P is dense in B, we must have inf {b:™ |new,} = 0. This proves (1) and
therefore (b).

I would like to thank H. J. Keisler, K. Kunen and A. R. D. Mathias
for valuable conversations concerning the present paper.
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