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A theory of immersed manifolds gave rise to a development of the
theory of fibre bundles of higher order and of related geometric objects.
The theory of prolongations of G-structures has been undertaken by
Cartan and now it is provided with strict foundations (cf. [3]-[5] and
[14]). Now there are two directions of further development of this theory:
one based on the jet calculus of Ehresmann (cf. [1], [2] and [13]) and
another in which a certain algorithm on external forms is used essen-
tially (cf. [9] and [10]). This algorithm was algebraized in [17]. However,
relations between the two directions are not evident. Nevertheless, in
spite of the fact that operating with co-frames (i.e., with external forms),
as it is presented in [9], seems to be unsatisfactory nowadays, many
local problems of the local differential geometry were solved by this
method. Thus there is a good reason to investigate relations between
the two mentionned directions in the theory of prolongations (cf. [4]-[8],
[11], [12], [15] and [16]).

In this paper we show that linear forms which satisfy the “structure
equations” of G. F. Laptev can be obtained by some intrinsic construction
by means of jet calculus. Although this construction will be presented
on a trivial bundle and a trivial groupoid only, transferring results to
a bundle a base of which is a differentiable manifold is rather easy.

All considerations are in the cathegory C*.

1. Let G be a J-dimensional Lie group and R"™ a Cartesian space
of dimension n. Consider a trivial bundle R" X G — R" and define a pseudo-
group 2(G,n) as follows:

Elements of #(G, n) are quadruples of the form (4, f, a, B), where 4
and B are open sets in R", fis a diffeomorfism of A into B, and ais a differ-
entiable cross-section over A in our trivial bundle. A rule of composition
in this groupoid will be defined as follows:

(4,f,a,B)(B,g,b,0): = (Aygofya"(bof)70)-
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Thus a-(bof) is a cross-section over 4, A> x> a(w)-(bof(w))eG. Dots
will denote throughout multiplication in a group, a pseudogroup or a group-
oid being just in question. We introduce a sign ' for denoting a recip-
rocal of any mapping, because we reserve ~! for an inverse in algebraic
structures. Thus we have (4,f,a,B)™" = (B,f,(aof )™}, 4) in the
groupoid Z(G, n).

Z(G@, n) acts on the open sets in R" X G as follows: if (z, g)e R"X G
and (4,f,a, B)eZ?(G,n), then (4,f,a, B):(v,g): = (f(x)7 a(w)'g)-

Fix a positive integer r. If we take jets of order r of the mappings
which appear in the elements of Z(G,n), then we obtain a groupoid
the elements of which are quadruples of the form (z, j,.f, j,a, ), where «
and y are a source and a target of the jet j.f, respectively, and = and
a(r) are those for j,a.

Algebraical structure of this groupoid is induced by the structure
of (G, n). We denote this groupoid by 4;. Evidently, 4, is a Lie groupoid.
We denote by a, § and y the following three mappings:

a: (@, . f, jra, y) > @,
B: (2, 3.fsdr0,9) =y (= f(x)),
7: (@, J.f) Jr @, y) > a().
The following three propositions are immediate consequences of the

general theory of differentiable groupoids [13].

ProrosIitioN 1. The groupoid structure restricted to a set {ue¥y|a(u)
= B(u) = ¢, ¢ is fized in R"} is a Lie group. If c varies over R"™, then we
obtain a family cf Lie groups, all being isomorfic one to another.

We choose the group corresponding to ¢ = 0 as a representative.
Denote it by G.

Definition 1. We call G7 the r-th prolongation of G with respect
to n.

PROPOSITION 2. A manifold formed of the set {we%,|a(u) =¢, c 18
Sfized in R"} can be provided with the structure of a principal fibre bundle.
A base of this bundle is R", its structure group is G, and canonical mapping
is B. '

In what follows we always assume ¢ = 0. The bundle for ¢ = 0
will be denoted by %,.(R", G).

PROPOSITION 3. Groupoid %; acts tramsitively on A,.(R", Q) by the
following rule:

0,4k, 3.9, x) (2, j.f5jra,y) = (07jr(f0h)’jr(g'(a’0h))7 y)°

Now let M be any differentiable manifold. Fix a¢ M and consider
a set @ of all C* mappings of R" such that 0 is send to a. Then the tan-
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gent space of the first order at a, (T M),, can be defined as a linear structure
on the set of all jets of the first order of elements of @, targets of these
jets being at the point a.

Notation. The mapping which assigns to any element ge¢® the
vector j,p will be denoted by d.

Consider bundle 7'4#,_, (R", @) which is the tangent bundle over
B, (B, G).

PrOPOSITION 4. Groupoid ¥, acts on TH,._, (R", @) in the following
way:

IfXeT#,_,(R",Q),then there exists a mappingu, B>t +— w,e #B,_, (R", Q),
such that X = du.

Denote fu, by z,. Let w = (z,, j,l, j,k, y) be an element of ¥, and
let W = (z¢y jp-1l,4,_1%,y) be its natural map on ¥, ,. Then we can
write u explicitly as follows:

Uy =.(xt7jr—l'gt7jr—leh 31(%))-
If ¢ is sufficiently close to 0, then there is a mapping
> (01 Jr—1(008), Jr_sley (K08y)), los,).

Its first order jet at O (i.e., having 0 as its source) is a vector which
belongs to 74#,_,(R", @) and depends on X and w only.
Thus we have obtained

ProroSITION 5. For any element we¥%;,w = (x,j,l,j.k,y), there is
a linear mapping wy which sends each vector tangent to %, (R",G) at the
point (0,),8,j,e,x) to a wvector tangent to A, ,(R", G) at the point
(0,3, 1., j,id., 0).

Denote by i the (r—1)-jets of identical mapping of R" onto itself,
the target of i being 0. If o denotes the unit element of G, then we denote
by % the (r —1)-jet of the mapping R"™ — 0. Let T, be the space tangent
to #,_,(R", @) at (0, %, %, 0). According to propositions (6) and (7), a linear
mapping

(W™ ") (T«%r—l(RnaG))ﬁ - T,

is associated with each element ue%,_,(R", G), where by %~' we have
denoted an inverse of % considered in the groupoid ¥,_,, and % is obtained
from » by the natural projection of r-jets to (r—1)-jets.

. Definition 2. The just described field of linear forms on %,.(R" @)
is called a canonical form.

We denote the canonical form at we%,(R", G) by £, and its value
at vector 2 by (2, Z&>.

Remark. Analogous form can be defined on the groupoid % but
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we prefer to consider it on the bundle in order to have a fixed set if its
values.

We have to present some computations. Recall that X corresponds
to a curve which is parametrized as follows:

t— (07jr—lst’jr—let7 St(O)).
We perform a multiplication in pseudogroup Z (G, »),
(67 Sty €4y S ) (90 y 8o 'y (€90 8p) ™" 6) (0’ 8o 108y, e (€008, 108,) 7, 6,),

which makes sense if 6 is a convenient neighbourhood of 0 in E" and ¢
is sufficiently close to the number 0. If we pass to jets which have their
sources at 0, then we obtain a curve
(1) t> (0, 51857081, Grsler: (€008 108,)), 85108,(0)).

Applying to this curve the operator d, we obtain the vector (2, X).

It follows from (9) that the form £ can be split into two forms, say w
and g. Namely, (w,X) isequal to d(j,_,8,'0s)and (g, X) is dj,_,(e-(e,08 '08)).
The form o is well known. Its intrinsic construction has been given by
Kobayashi [6] (cf. also [11], [12], [15] and [16]). Note that 2 reduces
t0 w if @ is a trivial one-element group. Vector ds Jos is a projection of X
to R".

If we present jets by formal polynomials, we can split both w and ¢
into components

. v 1 . ,
(2) o ~|o'+ Y ot v ,
| s—1 . i=1,..., n

_ r—1 -

(3) ~| ® -+ i a cth, . s
2 _‘P £ s Pits-.. JgU e | . 6,

where 6 = dimG.
In order to write following computations in a possibly compact
manner, we introduce the following notations. Let

[ T]eee zs]A=l,..., N; 0<iy,.s ig<n

be a system of local coordinates of N holonomical jets. Define inductively
the following operation on these systems:

(Xl cee XN){@} == X.:Xz cee le—*-Xl.X% S XN+...+X1X2...X;;V,

. v
(Xl'°'XA){il...isis+l} = ((Xl---X ){il...is}){i3+l} .

Dots as subscripts of X’s mean that we delete those summands
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which do not contain any lower index at the X signed by a dot. In par-
ticular, we have for N = 2

(X1X2){i1.. lel g X* +3X(11 dg_ IXE)‘F -t

3! 1 2 1y2
pl(s—p)! (Xiyip Loy i T F XX
(X'lxz){il...is} — (Xlx2) i) —Xlx?

7). )
(XX 0y = (XX iy — Kb o XXX

%...1g 1.8 °
Our symbols differ slightly from those used in [10], [11] and [16].
Using above-mentioned notation we may write briefly differential

identities satisfied by components ', @}, ..., @} ; | of w defined by (2).

We have (cf. [9]-[12], [15] and [16]):

i i 3 i i h
do' = —o A", ..., doj —(wp A @")

Jpeedr—1 T {71--dr—1}®

In formula (1) a vector d(j,_,eo0s,'os) appears. Recall that the map-
ping ¢+ s,'os yields a vector (w, X)>. The mapping X > d(j,_,€08,'08)
is linear. Denote the corresponding linear form by y. We have to find its
coordinate expression. In order to do it, write a polynomial expression
for j,_,e:

r—1

(4) e ~|a®+ Zla? ., s
]T"l 8! 1els o a=1,..., l’.

8§=1

PRrOPOSITION 6. Mapping X+ d (j,_,eof, 'of) is a linear form which
obeys the representation

r—1

~ 21 (awj g UL, 1S
¥ s! fieedgh 7 e a=1,..., é

8=1

or, in an equivalent form,

r—1

y 1 e, i T
P, X> ~ [Z?— (a5 <’y XD)gi,..ig) Teve ts]a:l,...,d.

s=1

Our proposition will follow from the following

LEMMA 1. Let [p*] be an N-tuple of polynomials in n variables, N > 1,
n > 1. Let Q be an open neighbourhood of 0 in R. Let Q@>t+> [r¥] be a C%
family of n-tuples of polynomials in n variables. Put

p (2, .. = P*+ Z—P;‘l 4 2L 2
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(2 .. = R*(t) + Z 11 ,s(t .. 2'n,

2 1 . .
kil n k k () T
dT (z,...,Z):’r + —8—'—"'1-1_'_@-821...23,

and consider a superposition

pror(zly ..., 2" = pHri (2}, ..., 2%, ..., 17 (2, ..., 2Y).
If we have 7i(2, ...,2") = 2° identically with respect to i and z, then
we have

(5) (dp*or) (2, ..., 2" = 2 — (Pir) a2 A

Proof of lemma follows by a direct computation in which we use
the following identity:

(pxo 7';) (zl, ceey z")
1 1 ,- ,
- Pu+ 2 E)—'- Z?lehp‘gghl(t) see '@hp(t)){il,_‘is}z 1,,.27P

After a differentiation we obtain, under assumptlons of the lemma,
formula (5).

Proof of proposition 6. In lemma 1 take the polynomial expres-
sions instead of p* and take the polynomial representation of j,_,(s,'os)
instead of 7. Assumptions of the lemma are evidently satisfied. Thus
the numbers »*, rf, ..., r,l .ip_, correspond to (¥, X5, (¥, %>, ...,
<w,1 gy X) a,nd the ploposmon follows.

We have to express in local coordinates a rule of multiplication
inside @G. Let g be any element of G. If (@, m) is a local map covering the
unity o of G, i.e., 0 is a domain in @ and m: ¢ — R’ then using the right
translations we obtain two other maps, say (¢,, m;) and (,0, ;m), such
that the first of them covers g and the second covers g~'. If we assume
that m(o) = 0; then we have m,(g) =0 and ,m(g~') = 0. Thus- there
exist C* functions LY, ..., L’ such that if ac0,, be,0 and a-be O, then

m*(a-b) = L(m;(a), ..., my(a); m*(a), ..., ,m°(a)),

where a =1, ..., 0. _

Denote by L. (respectively, by L:,) the derivative of L* with respect
to the u-th (respectively, to the (6 + u)-th) argument. Using traditional
notation, we should write

. oL

L, (z, ey @YY y0) = —6_37_"_(1;1’ e @5y, Y0,
. oL

Li (@ ..., 29, .., 90) = (@, ..., 2% 9% ..., 9.
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Assume that m!(0) = ... = m’(0) = 0 and put
g% (b) = L;(0, ..., 0; b, ...,0%.
Matrix ¢ is inversible and it is equal to the unit matrix if b = 0. Set
. (b) = 0,L;.(b), where b = (b%,...,0%,
€, (0) = pi,.

Thus we have the following expressions for structure constants C9,
of the Lie algebra of G:

CZ, = .pt;w—p:p'
Turn to formula (3). We find explicit expressions for components

P55 ovy i,...i,_, Of the form Q. It follows from formulas (1), (4), and
from proposition 6 that the following identities must be satisfied:

1’1"‘1:8

. 1 ) ,
(6) a®+da’ + (a; +da;)t +... + m (a5,...5s +dag ;)00 ... T8

= L%(polynomials representing ¢; polynomials representing v)

(a=1,...,6; s =1,...,r—1).
We write

qu = avq:;? SRR qgn---vp = 0?;9 0,,1q§.

Then we expand the right-hand member of (6) into a power series
at the point (0, ..., 0; al, ..., a’). A comparison of coefficients at '« yields

da® = a5’ + g3 (a) o,

dai = a}; 0 + a5 o} + g5, (a)al¢’ + g5(a)¢f,
da; i, = (85 0')g,..9 +

1
+ Zﬁqgnmrp(a)(a'?l a?'p?"?){il...is} +q§(a)<p§1...,.s

for s =1,...,r—1.

Hence we obtain directly the following recurrent formulas for the
components of ¢:

¢* = l;(a)(da"—a}‘wj),

of = Li(a)(daf — (af ')y — iy (@) al’),

ooooooooooooooooooooooooooooooo

@: iy = lu(a) (da':"...is_ (a7 o) i —
1 1 1

1 ay
- 2 —lT qﬂ,l,_,yl(a)(a_yl see af,A(P{i){il__.is}).
A

[l%]e,u=1,....s denotes here the matrix inverse to the matrix [g¢5].
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PROPOSITION 7. If we set o' =0 for i = 1,...,n, then ¢ reduces to
the fundamental left invariant form on G,.

This proposition follows directly from the construction of G7 and
of Q (see proposition 1). Observe that ' = 0 corresponds to the case
a(u) = f(u) = 0. Thus we can restrict ourselves to a standard fibre of
the bundle #,(R", G), i.e., to GY.

2. Our purpose is to show that the components of the form 2 satisfy
certain differential identities which in fact are structure equations of
Cartan and Laptev. Then we conclude that the process of prolongation
based on the theory of jets gives us prolonged groups together with their
fundamental forms and these forms are identical with those of Laptev [10].

Keeping in mind the introduced notation we have

LEMMA 2. The following identities hold:

45, (a) g5 (@) — g5 (@) g3 (a) = ¢, (a)C5, .

Proof. If a, b, ¢ are in a suitable domain in R", then L%(c; L(b; a)}
= L"(L(c; b); a), where L = (L, ..., L°%). Differentiating both members
with respect to the g-th coordinate of ¢ and substituting ¢ .= 0 we obtain

L3 (05 L(b; a)) = L}, (b; a) L5(0; b).
The same procedure with b yields
(8)  Lj(05a)L2,(0, @) = L;(0, @) L}, (0, 0)+L;, (0, @) L, (0, 0).

Making use of common identities L},(0;0) = d;, and of the above-
-made assumptions L}, (0; @) = ¢5,(0), ¢5,(0) = p3,, C5, = Ps, — Py, We
can write (8) as follows:

g5, (@)g3(a) = gi(a)+L5,(0; 0) L, (a).

In view of the identity L;,(0;a) = Ls(0; a), we obtain the lemma
by alternating lower indices.

THEOREM 1. Components ¢° @i, ..., ¢; i of the form Q satisfy the
following differential identities:

1 )
def = —Clp” A @+ ' A gf,

)
PR P IR TR S SV S SR S S
(9) de; =—2—Cy699i/\(p +—2—0y6¢ A @i+ WA @5 + W' A @l
1 5, i B
d‘Pfl is = o CLs(@"A @)y ig T (O A @), i
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Proof. We prove our theorem by induction. We have (see (7))
da® = aj o’ + gj(a) o,
(10) da = a0’ + af o} + g, (a) al¢" + g5 (a)¢f

If we differentiate externally the first of these equalities, then on
the left-hand side appears 0. We replace da; which appears in the right-
-hand member by its expression (10) and we replace dw’ by o A wl.
We also use equalities

dgs(a) = g5, (a)(a] o’ + ¢4 (a)¢’).
Then we obtain

0 = aj;0* A & L ajof A o +af 0" A 0l +
+45,(a)a}¢" A o g5, (a)a] 0’ A ¢+
+45(a)¢] A o' + g5, (a)G5(a) 9’ A ¢ +g5(a)dy’.

The first and the second rows vanish. Now we apply lemma 2 to
the second term in the third row. This yields

1 .
g5 (a) (dg” — ECﬂatpy AP — o’ Agl) = 0.

Thus, in view of the non-singularity of the matrix ¢, we obtain the
first identity of theorem 1. Second step of the induction is analogous.
Assuming that theorem 1 holds for s =0,1,...,p, p <r—2, we diffe-
rentiate the p-th of equalities (9) and make use of these equalities up
to the order p +1 and of the assumption of the induction. Thus we obtain
some identity which is to be reduced to (p +1)-th one of (9). We apply
again lemma 2 and identities which are obtained from lemma 2 by a direct
differentiation term by term with respect to all variables. Calculation
-does not contain difficult steps, but since it is rather inconvenient for
presenting it in details, we leave it.

Following Laptev’s theory, the existence of prolonged groups is
a consequence of the following facts:

10 Starting from the structure equations

1 ,
do® = Eoqu)ﬂ AP+ Agj

one can prove by means of generalized lemma of Cartan that there exist
forms @7, ¢7 .,y .-y 95,...i,_, Which satisfy identities (9).

20 If 0! = ... = 0" = 0, then structure equations (9) become Maurer-
-Cartan equations of some group (more precisely, of some local Lie group).
These groups form a sequence of prolongations of the initial group G.
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