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1. Introduction. An n-dimensional (» > 3) Riemannian manifold
(not necessarily of definite metric form) is said to be conformally symme-
tric [2] if its Weyl’s conformal curvature tensor

1
(1) Chijk = Rhijk YT (ginhk — githj + 0p Ry — O Ry) +
R
+ n—1)(n—2) (8kgss — 079u)
satisfies the condition
(2) Chijk,l =0,

where the comma denotes covariant differentiation with respect to the
metric.

It follows easily from (1) and (2) that every conformally flat (n > 3)
as well as every locally symmetric Riemannian manifold (»n > 3) is nec-
essarily conformally symmetric. The converse statement fails in general
([8], Theorem 1).

Investigating conformally symmetric manifolds, Glodek discovered
([4], Theorem 2) that a connected conformally symmetric manifold with
a positive-definite metric is conformally flat or its scalar curvature is
constant. Using Glodek’s result, the present author was able to prove
the following

THEOREM A ([8], Theorem 2). Let M be a connected conformally symme-
tric manifold with a positive-definite metric, dim M > 4 (*). If M is mot con-
formally flat, then M is locally symmetric.

In the present paper we shall prove a slight generalization of this the-
orem (Theorem 1). The proof is based on the following remarkable result
of Tanno:

(') Recently, it has been proved that Theorem A is valid also for dimM = 4
(A. Derdzinski and W. Roter, On conformally symmetric manifolds with metrics
of indices 0 and 1, to appear).
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THEOREM B ([12], Theorem 6). A connected conformally symmetric
manifold (not necessarily of definite metric form) is conformally flat or its
scalar curvature is constant.

The remainder of this paper deals with a generalization of Tanno’s
Theorem B as well as with some conditions for a Riemannian manifold
to be locally- symmetric.

All considered manifolds are connected and of class C*.

2. Generalization of Theorem A. The following lemmas are essential
tools for this section:

LeEMMA 1 ([8], (12)). Let M be a conformally symmetric manifold of con-
tant scalar curvature. Then the metric tensor of M satisfies the relation

(3)  InuBrm pCiik — Inm Byt p C i + Bt p Crnije — Bm, p Crije —
—9aRom pC hjx + Gim Bt p Crjie + Bt p Chmj — Bim, p Onaje +
+ 95 Rem, 5 Ckni — Gim Brt,p CTkni + Bt p Crimie — Bjon, p Cnitie +
+ 9 Bem,pCjin— Jim Bra,, C5in + B p Crijon — B,y Cnit = 0.

LEMMA 2 ([8], Lemma 4). Let M be a conformally symmetric manifold
of constant scalar curvature. If M has dimension m > 4, then its Weyl's
conformal curvature tensor satisfies the condition

(4) er’pCr,-jk = O.

Remark 1. It was assumed in [8] that all manifolds under consid-
eration have positive-definite metric forms. However, as one can easily
verify (see [8], proofs of Lemmas 3 and 4), both Lemmas 1 and 2 remain
true without this assumption.

THEOREM 1. Let M be a conformally symmetric manifold of dimension
n > 4. Then its Weyl’s conformal curvature tensor C is null (i.e., (C, C) = 0)
on M or M is locally symmetric.

Proof. Suppose that the Weyl conformal curvature tensor is not
null on M. Since M cannot be conformally flat, Theorem B yields R = const
and Lemmas 1 and 2 work.

Hence, in view of (4), equation (3) takes the form

(5) Rhl,p Omijk - Rhm,p Clijk + Ril,p Chmjk - -Rim,p Chljk +
+ Bj1, p Crimi — Bjm,p Onitk + Bt p Chisjm — Biem pChijt = 0.

Transvecting now (5) with C™7% using the well-known formulas
Crije = Cjins = — Oarjr = — Ching, and applying (4) again, we get

R,y o™ik Crij = 0.
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It follows easily from (2) that C™7*C,; = const. Now, since the
Weyl conformal curvature tensor is not null on M by assumption, we
obtain C™#*C, ., = const # 0. Hence R, = 0 which, together with (1)
and (2), implies R,;,; = 0.

Thus the theorem is proved.

Remark 2. If the metric form of M is positive-definite, Theorem A
is an immediate consequence of Theorem 1.

3. Generalization of Theorem B. In the sequel we need the following
lemmas:

LEMMA 3 ([9], Lemma 1). If ¢; and T; are numbers satisfying
(6) eiij+6iji =07
then either all the e; are zero or all the T,; are zero.

LEMMA 4. If e; and Dy, are numbers satisfying

(7) e; Dypyj+€n,Dyyjx + €; Dygps + €, Dy, = 0,
(8) Dy = Djppi = — Dgj = — Dypipys

then either each e; is zero or each D, is zero.

Proof. Suppose that one of the e’s, say e, is not zero. Then (7)
with ¢ =1 =) = q gives 2¢,Dy;, = 0 since D, = Dyyy,, and, there-
fore, D, = 0 for all k and k. Putting ¢ =l = q into (7), we obtain ¢,D,,;;
= 0 and, therefore, D,; = 0 for all &, k and j. Putting now ¢ = ¢ into (7)
and making use of Dg,;; = 0, we get ¢, Dy,;; = 0, which leads immediately
to our assertion. The lemma is proved.

Remark 3. Lemma 4 is implicitly contained in the proof of Tanno’s
Theorem B. We have included its proof for completeness.

Definition ([6] and [10]). Let M be a Riemannian manifold with
not necessarily definite metric form, dimM > 3. A (1, 3)-tensor B of

class C® (with components B ) will be called a generalized curvature
tensor on M if

(9) B+ B+ B, = 0 (the first Bianchi identity),
(10) Bhijk = - Bh’ikj’ Bh‘ijk = B'kh‘i’

J
where B, = G B .
The tensor B is said to be proper if it satisfies the second Bianchi
identity
B i1+ B s+ By = 0.
For every generalized curvature tensor B there is a natural decom-
position
B = B(1)+ B(2)+ B(3),
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where

B = ——— 8(gy 8 —gu o),
n(n—1)

B2y = —— (By 8k — By 8l + g B — g B) +———— (g4 88 — g3y 81),
n—2 n(n —2)

1
B(3) " = By + n—2 (8} By — 8% By + g B'; — 9, B%) +

1
T n—Dn-2)
B,; = B";, are the components of the Ricci tensor Ric(B), and § = S(B)
= B, is the scalar curvature of B. B(3) is called the Weyl conformal
curvature tensor of B.
One can easily verify that for a proper generalized curvature tensor B
the relations

S(gij 51’:“91'1: 5?)7

1
(11) .Br - Bij,k_Bik,f’ Brj’r = ES’J

tik,r

hold.
THEOREM 2. Let M be a Riemannian manifold (not mecessarily of
definite metric form) whose Ricci tensor satisfies the condition

(12) . Ryjp— Ry ; = (B x9ii— R ;gu)-

2(n—1)

If B is a parallel generalized curvature tensor on M, then the scalar
curvature of M i8 constant or B(1) = B and B(2) = B(3) = 0.

Proof. Since B is parallel on M, we obtain
Bhsjke,im — Bhijkymu = 0
which, in view of the Ricci identity, can be written as
(13) B,ijx B him + Barji B itm + Bk B jim ~+ Bhije B jgm = 0.
Differentiating (13) covariantly and contracting with ¢™”, we get
By Ry s+ Byt Boip s+ BTini By s + B jin Boiper s = 0.
But the last equation, in view of (12), implies
(14) guR, By +gaR B o+ 9y R B yni+ gu R o BT jip —
— R, Byjx — R ; Bipyj — R By — B . By, = 0.
Contracting now (14) with g™ and taking into account (9), we obtain
(15) (n—1)R,b"; = R, B;—R ;By,
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whence
1
(16) R,,B' = o SE,.

Substituting (15) into (14), we obtain
(17)  gu(BiB;— R ;By)+ga(R ;By,— R, By;) +
+9,;(R ; By — R 3, By;) + g (R , By — R ; Bjy,) —
—(n—1)(R , Byjy + R ; Bipy; + R j By + B 1 Byjip) = 0,
which, by contracting with ¢” and making use of (16) and (15), implies

1 1
(18) E, (Bhl T Sghl) +R, (Blk o Sglk) = 0.
Since the tensor
1
T; = B;;— ;Sgij

is symmetric and parallel, as an immediate consequence of Lemma 3 we
get B = const or T';; = 0 on M. If T;; = 0, equation (17) takes the form

1
R,h[(" —1) By — " S (g9 — gikglj)] +
‘ 1
+ R ;| (n—1) By — . S (gnedrj — Juegin) | +
1
+ER ;| (n—1) By — . S (Inrga— Imgux) | +

1
+ R [(n— 1) By — . S(9:9m —'gughj)] = 0.

The assertion follows now from Lemma 4 and from the fact that
the tensor

Dyjr. = By — S(9:9— 9ix91;)

1
n(n—1)
satisfies (8) and is parallel on M.

Remark 4. It is easy to verify that the ordinary Weyl conformal
curvature tensor ¢ is a generalized curvature tensor with Ric(C) = 0
and, therefore, S(C) = 0. If M is now conformally symmetric, then C
is parallel and, in view of

n—3

’ 1
s — [(Rf,,k—R.-k,,-) _

Y 2n—1) (R,kgfj-R,jguc)] =0
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(see [3], p. 91), condition (12) is satisfied. Hence, as an immediate conse-
quence of Theorem 2, we have R = const or the tensor C vanishes. Tanno’s
theorem is therefore a consequence of Theorem 2.

4. Conditions for a Riemannian manifold to be locally symmetric.
In this section we obtain some necessary and sufficient conditions for
a Riemannian manifold with a positive-definite metric to be locally sym-
metric.

We shall use the following notation:

(19) - Shijklm = Bhijk,lm - Bhijk,ml

. r r r r

- _Briij hilm — Bhr]‘k-R ilm — Bhirk-R jlm — Bhier kim ¥

%x

(20) - Shijklm = Ohijk,lm - Ohijk,ml

_ r r r r

- Crijk-R hlm — Chrij tilm Chirk R jlm — Chier kim
(21) —P hijklm — Rhijk,lm — Rhijk,ml

r r r r
- Rriij hlm — thij ilm — RhirkR jlm — Rhier klm *

LEMMA 5. If Bis a proper generalized curvature tensor on a Riemanniarn.
manifold M, then on M the equation

1 . . .
(22) > 4Q = g™ Bh”k,m Byijia+ 2B "% B o — 2B 8, T

holds, where Q = B"*B,... and A denotes the Laplace operator.
Proof. Since B is proper on M, we have
Byijkim = — Braj,mk — Bhiklﬂ;j + Shirtjm + Shitjxm-
This relation, in view of (9) and (10), yields
¢ B"* Bk im = 2B By, o — 2B 8,47,

which, in view of the obvious formula
1 X 3
Py 4Q = ¢"B"*  Buiri+ 9 B"* Byt im)

leads immediately to (22). Thus the lemma is proved.
As a consequence of Lemma 5 we have

COROLLARY 1. Let B be a proper generalized curvature tensor on a compact
Riemannian wmanifold M.

(a) If B'yy, = 0 and B"*8,,". <0, then B is parallel on M.
(b) B is parallel on M if and only if B";., = 0 and Sy, = 0.
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It is known that the Weyl conformal curvature temsor C satisfies
the following equation (see [1], (3.7), and [3], p. 91):

Ohnije,t + China, i+ Chaty,
1 .
=0_3 (93 C nit,r + 93 C it r + 90 Chieg,r + Ik Ot + 955 Chiticyr + I O ) -

Hence C is a proper generalized curvature tensor if and only if C";,. , = 0.
Therefore, as a consequence of Corollary 1, we have the following
result obtained in [7]:

COROLLARY 2 ([7], Theorem 1). Let M be a compact Riemannian
manifold of dimension m > 3.

(a) If Oy, = O and C** 83,7, < O, then M is conformally symmetric.

(b) M is conformally symmetric if and only if C"yp. , = 0 and Syijum = O.

Combining Corollary 2 with Theorem A, we get

COROLLARY 3. Let M be a compact Riemannian manifold of dimension
n > 4.

(@) If Cyr = 0 and C™*S5.7. <0, then M is conformally flat or
locally symmetric.

(b) If M is not conformally flat, then M is locally symmetric if and
only if Oy, =0 and Syijum = 0.

Remark 5. Replacing in Corollary 1 the conditions 8y, =0
= B'yr.» bY Prijpim =0 = B, ., we obtain another characteristic of a
compact locally symmetric manifold (cf. [5], [13], p. 44).

LEMMA 6. Let B be a proper generalized curvature tensor on a compact
Riemannian manifold M. If
(23) B+ Bji+ By =0 and  Spjum =0,
then B is parallel on M.

Proof. Applying the Laplace operator to @* = B B,; and using (23),
we get

1 .. ,
(24) ) 4Q* = glmBu,lBij,m-"2glmB'jBil,jm'

But, by (23) and (11), §; = B";, = 0. The last relation, together
With (24) and Bil,jm—Bil,mj == 0, implies

1 .
E A*Q = glmBu,lBij,m'

B;; is therefore parallel on M. Our assertion follows now from (11)
and Corollary 1.
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As an immediate consequence of Lemma 6, we get
COROLLARY 4. A compact Riemannian manifold is locally symmetric

if and only if

Ry, +RByi+Ryy =0 and Py, =0.

Remark 6. Lemma 6 has been inspired by results of Sumitomo

([11], p. 129) and Simon [10].
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