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IN FANO-PAPPIAN AFFINE PLANES

BY

MALGORZATA GROCHOWSKA (WARSZAWA)

Introduction. In this paper an axiom system for the class of Fano—Pappian
plane dilatation groups will be given. It will be shown how to find an axiom
system for classes of dilatation groups of Fano-Desarguesian affine planes,
affine spaces, and Fano—Pappian affine spaces (dim > 3).

We base on affine geometry with parallelity, either two-dimensional with
Szmielew’s axioms or of higher dimension with Kusak’s axioms (see [2] and
[1]). In both of these geometries we assume the axiom of Fano or at least
the axiom of Desargues.

In models for such geometries we can define central symmetry as a
dilatation which is simultaneously an involution. We know from the Fano
axiom and the property of rigidness that a central symmetry has exactly one
fixed point. From the Desargues theorem it follows that around each point
there exists a dilatation which is an involution. We can therefore identify
involutions of a dilatation group with their fixed points. This enables us to
create axiom systems for classes of dilatation groups of appropriate affine
planes or spaces.

1. Dilatation group of affine plane. By a plane affine geometry we shall
understand the theory based on the following Szmielew’s axioms:

S1.0. ab|| ba.

S1.1. ab||cc.

S1.2. a# b A ab|pg A ab||rs— pq]||rs.

S1.3. ab||ac — bal|| bc.

S14. 3a, b, c) ~ab||ac.

S15. (Va, b, p) 3q (abllpg A p # 9).

S1.6. ~abllcd—3p (pa|lpb A pc|| pd).
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Let us denote this theory by Af,; every its model will be called an affine
plane.
Let us denote by F the sentence

ab||cd A ac||bd A ad||bc — ab]|| ac,

by D the sentence
~ab|lap A ~abl|lar Ao #a,b, p,q,r,s Aoallob A op|log

Aor|los A ap||bg A ar||bs— pr||gs,

and by P the sentence
abllac A de|ldf A ae|lbd A bf|lce—af| cd.

If we enrich the axioms of Af, by the sentences F, D or P, we shall
obtain Fanoian, Desarguesian or Pappian affine geometry, respectively.

Let 4 = ¢S, ||> be a model of Af,. The set of affine plane dilatations,
ie., the set of all bijections f of the plane S satisfying the condition
ab|| f (a) f (b) for all a, beS, will be denoted by Dil(A).

We recall some basic properties of Dil(A).

THeoreM 1.1. Dil(A4) forms a group of transformations.

THeOREM 1.2 (rigidness). Let f e Dil(A) and a, beS. If a # b and f (a) = a,
f(b) =b, then f.=1d.

COROLLARY 1.1. Every non-identical dilatation has at most one fixed point.

Let A =S, |) be a Fano—Desarguesian affine plane.

THeorReM 1.3 (homogeneity). We have

abllcd na#b,c#d—3f(feDil(A) A f(a) =c A f(b) =d).

For involutions of such planes the following theorems hold:

TueoreM 14. feDil(4) A f2=1d #f—3!p (peS A f(p) = p).

TueoreM 1.5. VpeS 3! f(feDil(4) A f2=1d # f A f(p) =p).

DerFiniTION 1.1 Let 6, be a transformation from Dil(4) such that
o2 =1d # g, and g,(p) = p.

CoroLLARY 1.2. feDil(4) = (f2=1d # f<3p (peS A f =a)))

TueoreM 1.6. If feDil(A) and peS, then fo,f ™' =0y ,.

Let Tr(A) be the set of dilatations without fixed points and identity, and
J,(A) the set of dilatations with a fixed point p. Notice that o,eJ,(A4).

2. Dilatation group theory. We shall give here the axiom system of

Fano—Pappian affine plane dilatation groups.
Let DI, be a theory based on the following axioms:

G21l. al =la=a.
G22. Va Ix (xa =ax =1).
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G2.3. (ab)c = a(bc).

G24. (@>=1Ab>=1Arc*=1)
—(@bc)*=1va=1vb=1vec=1).

G2.S5. (ab=ba Anac=ca)—(bc=cb v a=1).

G26. (Va, b, o)((@®*=b*=c*=1Ara,b,c#]1)

—(@3d (d#1 Aad=da A bd =dc)
—3d (d #1 Adc=cd A ad = db))).

G27. 3a,b,0)Vd (a*=b*=c*=1nra,b,c#1 Aa#b,c
A (ad = da — db # cd)).

G28. (Va, b, c,d)@e,f, g)[(a2 =b2=c*=d*=1+#a,b,c,d
A#@ b )rd+£a c)—(fa=e Afb=df
Alga=ag nge=cgva=e) v (fa=af A fc=df)

v (fa=adaf Afb:cf))].
THEOREM 2.1. Let M= Af,+ P+ F. Then Dil(M)E Dl,.
Proof. Take M satisfying Af,+ P+ F and consider Dil(M).

1° Dil(M)E G2.1, G2.2 and G2.3. G2.1-G2.3 state that the discussed
structure forms a group, so they are a consequence of Theorem 1.1.

2° Dil(M) = G24. Assume f, g, h are involutions, so from Corollary 1.2
we obtain f =o¢,, g =0,, h =0, for some p, q, re|M|. Then o,0,eTr(M).
Therefore for some s we have 6,0, = 0,0,. Thus 6,0,0, = g;.

3° Dil(M)[= G25. It is easily seen that if feJ, (M), f #1d and fg = gf
for ge Dil(M), then geJ,(M).

Assume f # Id. Consider two cases:

(i) feJ,(M). Then g, heJ,(M), which gives gh = hg as a consequence
of P.

(i) fe Tr(M). Then g, he Tr(M), so gh = hg, which is a consequence
of D.

4° Dil(M)[ G2.6. By the assumption there are points p, g, r such that
f =0, g=o0, h=o0, Take jeDil(M) such that j # Id and fj = jf and gj
= jh. For such j we have j(p) = p and j(r) = q. We search ke Dil(M) such
that k # Id, k(r) =r, and k(q) = p. Assume that # (p, q, r) (possibly taking f
for k). We have pr| pq, so gr|/qp. The existence of k follows from The-
orem 1.3. ,

5 Dil(M)= G2.7. By S1.4 there exist points a, b, ¢ such that ~ ab||ac
(thus a # b, ¢ and b # c). Therefore, there is no f € Dil(M) such that f(a) = a
and f(b) = c. We take involutions a,, g, ..

6° Dil(M) [ G2.8. Notice the following fact remains true for every affine
plane. For all points a, b, c, d such that ~ al|| ac there exists a point e such
that ab||de and ac|lae. So if we have involutions g,, g,, 6., 6,, then the
existence of the dilatations we seek follows from Theorem 1.3.

The following sentences can be proved in DlI,.
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LemMAa 2.1. (ab=ba ra’*=1Ab>=1)w(a=bva=1vb=1).

Proof. Let a, b # 1. Denote aba™! by c. We have then ab = ca and
a # 1. By G2.6 there exists f such that fc = ¢f and fb = bf. From the equality
ab = ba we obtain ¢ = b, fb = bf and fb = af. This gives a = b.

LEMMA 2.2. We have

(Va,b) 3c (@*>*=b>=1#a,b—sac=cb Anc =1 Arc+#1).

Proof. When a = b, for ¢ take a. Assume a # b. Denote bab™! by d. We
have ba = db and b # 1. By G2.6 there exists f such that fa = af and fd = bf.
Let c=fbf ~'; then ¢? =1, c # 1, and ab = bd. Then fabf ~! = fbdf ~!; but
we have fabf ' =faf "'fbf "' =ac and fbdf "' =fbf "'fdf "' =cb, so ac
= cb.

LEMMA 2.3. We have
(@*=b*=1#a,brfa=af nfb=bf)—=(a=bv f=1).

Proof. Let a # b. Assume that f # 1. By ¢ we denote fbf ~'. By G2.6
there exists g such that gc = c¢g and gb = ag. From the assumption bf = fb it

follows that b = c; so gc = gb = bg, which means that ag = bg and, finally, a
= b.

Given a group satisfying axioms G2.1-G2.8 we may construct an affine
plane..
Let G = (G, 1, > be a group.
DEerFiniTION 2.1.
S(G):=Inv(G) = {aeG: a* =1 # a},

abllged: <> f (feG Afa=cf Afb=df)va=bvc=d)
Aa,b,c,deS(G),

A(G):= <S(G), llg>-

THEOREM 2.2. Let M= Af,+ F+P. Then M = A(Dil(M)).

Proof. From Theorems 14 and 1.5 it follows that S(Dil(M))
= {0,: pe|M|} and o transforms |[M| one-to-one onto S(Dil(M)). From
Theorems 1.3 and 1.6 it follows that ¢ preserves parallelity, which means that
o is an isomorphism.

THeEOREM 2.3. If G| DI,, then A(G)[E Af,.

Proof. Take G = (G, 1, -> such that Gl= Dl,. Let S = S(G) and || = ||¢.
We shall check if in ¢S, ||) axioms S1.0-S1.6 are true:

0° ab||ba. a, beS. By Lemma 2.2 there exists ceS such that ac = cb.
1° ab||cc. This follows from the definition of ||.

2 a#b Aabl|lpg A ab||rs— pq||rs. Let a, b, p,q,r,seS. If p=qorr
= s, then pq||rs from 1°. If p # q and r # s, then there exist f and g such that
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fa = pf, fb = qf and ga =rg, gb = sg. Therefore, gf "'p=rgf ! and gf "'q
=sqf "L

3° ab||ac — ba||bc. Let a, b, ceS and ab|lac. fa=borb=cora=c,
then ba|lbc. If a#b, b#c, a# c, then there is f such that fa = af and
fb=cf, f # 1. By G2.6 there exists g such that gbh = bg and ga = cg.

4° 3a, b, ¢c) ~ab|lac. By G2.7 there exist a, b, ceS such that a # b, ¢
and, for any d, ad = da implies db # cd. This gives ~ ab||ac.

5°(Va,b,p) 3q (abllpq A p # q). Let a, b, peS. If a =b, then choose
arbitrary geS, q # p. If a # b, take reS such that rp = br and put q = rar.

Remark. We have rp = br and ra = gr; in other words, pa|| bq. There-
fore, q and a, b, p form a parallelogram. Moreover, we do not need G2.8 to
prove the existence of g.

6> ~abllcd—3p (pallpb A pc||pd). Let a,b,c,deS and ~ ab||cd;
then a # b and ¢ # d. From 5° we have g # 0 such that ba||cq. So ~ cq]| cd.
Now we choose p in accordance with axiom G2.8.

TueoreM 24. If G= Dl,, then G = Dil(A(G)).

Proof. Let S =S(G) and let 4: G — S5 be defined as follows: for each
acS, Ag(a) = gag™'; in other words, 4 is the conjugation corresponding to g,
restricted to S. Thus A preserves the group operation and is well defined, i.e.,
acS implies Ag(a)eS for every geG.

1° A is one-to-one. Take g, he G and let A, = 4,. Pick a, beS such that
a#b. Then A,(a) = A,(a) and A,(b) = 4,(b); in other words, h"'gag™' =a
and h™'gbg 'h=b, so g=h by Lemma 2.3.

2° For each geG, 4,eDil(A(G)). This fact follows from the definitions
of || and A.

3° A transforms G onto Dil(4(G)). Let us take a, beS, a#b, and
ye Dil(A(G)). We have ab|| y(a) y(b) and y(a) # y(b). Therefore, there exists g
such that ga = y(a)g and gb = y(b)g. Thus y(a) = 4,(a) and y(b) = 4,(b).

Now the equality y = 4, is a consequence of Theorem 1.2 and 2°.

THeOREM 2.5. GE DI, - A(G)E F.

Proof. Take a, b, ¢, de S(G) such that ad||cb, ac||bd and let ~ ac||ch.
Pick peS(G) such that pa = bp. Denote pdp~' by ¢’. We have pd =c'p,
ad||c’'b, and ac’||bd. From axiom S1.2 we obtain cb||c’b and ac||ac’, and
from S1.3 we get cc’|lcb and cc’||ac. If ¢ # ¢, then we would have cb|| ac.
Hence ¢ = ¢’ because ~ cb|lac. Thus we obtain ap||ab and cp||cd.

THEOREM 2.6. G = D1, —» A(G) = D.

Proof. On the affine plane the sentence D holds if and only if the
groups of homotheties with fixed center are transitive. Let a, b, ceS,
a # b, c, and ab||ac. By the definition of parallelity there exists f such that
fa =af and fb = c¢f. We take A, for the dilatation we look for.

2 — Colloquium Mathematicum LIII.2
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THeoreMm 2.7. G DI, - A(G)E P.

Proof. On the Desarguesian affine plane the sentence P holds if and
only if the groups of homotheties with fixed center are abelian.

Let 8, yeJ,(A(G)), where aeS. There exist h and k such that 8 = 4, and
v = /4. We have hah™! = a and kak~! = a. Therefore ha = ah and ka = ak.
By axiom G2.5 we have hk = kh, so fy =7yp.

THEOREM 2.8 (representation). We have

GE DI, «3IM (ME Af,+P+F A G = Dil(M)).

Proof. — is a direct consequence of Theorems 2.3-2.5 and 2.7 (for M

take A(G)).
«—1s a consequence of Theorem 2.1.

Below we give a new “group” theorem about representation for 2-
dimensional affine geometry.

THEOREM 29. M= Af,+ P+F <3G (GE DI, A M = A(G)).

Proof. — is a consequence of Theorems 2.1 and 2.2 (for G take
Dil(M)).

— is a consequence of Theorems 2.3, 2.5 and 2.7.

3. Remarks on the axiom system DIl,. Now we show to which geometri-
cal facts some of the axioms of DI, correspond. Let DI? be the theory based
upon axioms G2.1-G24 and G2.6-G2.8.

TheoreM 3.1. GE= DI <3 M (M= Af,+ D+ F A G = Dil(M)).
Proof. It suffices to notice that if G| DI2, then

AG)E Af,+F+D and G =Dil(4(G))

(in the proofs of Theorems 2.3-2.6 we did not use G2.5).

If M= Af,+ F+ D, then Dil(M)} DIY.
CoroLLARY 3.1. If G= DI2, then G G2.5< A(G)[= P.
Axiom G2.5 is therefore equivalent to the axiom of Pappus.
Lemma 3.1, If GE G2.1-G2.7, then

A(G)ES1.1-S1.5+P+F and G = Dil(A(G)).

Proof. Notice that in the proofs of Theorems 2.3 (0°-5°) and 2.4-2.7

axiom G2.8 was not used.
Remark 3.1. In the proof of Theorem 2.4 the rigidness of the plane

dilatation group was used, but this fact holds for dimension-free affine
structures satisfying S1.1-S1.5 only.
THeorem 3.2. If G G2.1-G2.7, then
GE G28<=A(G)ESl.6.
Proof. — is evident (cf. Theorem 2.8).
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«. From the assumption and Lemma 3.1 we obtain 4(G)E Af, and G
= Dil(A(G)). By Theorem 2.1, Dil(A(G))|= G28.

We can say that axiom G2.8 is equivalent to the upper axiom of
dimension.

Let Af,; be a theory of affine spaces of dimension 3 or higher based
upon Kusak’s axioms, i.e, S1.1-S1.3, S1.6,

dd (ab||cd A acl||bd), ~abl|lac A ad|lac—3p (ab||dp A bc||bp).
Lemma 3.2. If GE G2.1-G2.7, then

(1) A(G)EE=3d (ab||cd A ac||bd),
(i) A(G)E ~ab|lac A ad||ac — 3 p (ab||dp A bc|| bp).

Proof. (i) has been already shown in the proof of Theorem 2.3 (see the
Remark to 5°).

(i) Take a, b, ¢, de S(G). From the assumption that ad|/ac we obtain
callcd. By the assumption ~ ab|/ac we have a # c; then there exists an f
such that fc = ¢f and fa = df. Take p =fbf ~'; in other words, fb = pf. Thus
ab||dp and cb||cp, whence ab||dp and bc||bp. (If ¢ =d, then p=c)

THEOREM 3.3. We have

GEG21-G27, ~G28<3IM (G =Dil(M) A M= Af,3;+F+P).

This theorem is a consequence of Theorem 3.2 and Lemmas 3.1 and 3.2.
CoRrOLLARY 3.2. We have

GE G2.1-G27
<3M (G = Dil(M) A (M| Af,+ P+F v M Af 3+ P+F)).

Remark 3.2. In Af,,, the sentence D can be proved (see [1]).
Remark 3.3. In Af,;+F, axiom G2.5 is equivalent to the sentence P.

Remark 34. In DI?, axiom G228 is also equivalent to the upper axiom
of dimension.
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