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ON TOTALLY UMBILICAL SURFACES
IN SOME RIEMANNIAN SPACES

BY

Z. OLSZAK (WROCLAW)

Introduction. Let V,, be a totally umbilical surface immersed in
a Riémannian space V, satisfying the relation V,C,,,, = 9.Ciue
for some vector ¢,, where C,,,,, is the Weyl conformal curvature tensor
of V,,. It has been proved [5] that the Weyl conformal curvature tensor Cy;;
of V,, satisfies the same relation, the vector involved being the projection
of the vector ¢, onto V.

In this paper we prove that for V,, we have H’Cy;; = 0, where H
is the mean curvature of V,,.

1. Preliminaries. Let V,, be an m-dimensional Riemannian space
immersed in an n-dimensional Riemannian space V,, and let »* = u*(w)
be the parametric representation of the subspace V,, in V,, where (u’)
are coordinates in V,, and (w’) are coordinates in V,,. Let B} = 0,4/,
where 0; = d/0w’. If @,, is the fundamental tensor of the space V,, then
9;; = B/B@,, is the first fundamental tensor of the subspace V,,.
In this paper, the Greek indices take on values 1,...,7n, and the Latin
indices take on values 1,...,m (m < n).

Let N} (x =m+1,...,n) be pairwise orthogonal unit normals
to V,,. Then we have the relations

(1) G NN =¢,, G,N N =0 (z#y), G,N}'B*=0,

where ¢, is the indicator of the vector N, .
The Schouten curvature tensor H; of the subspace V,, is defined by

(2) sz'l = V:‘ Bi)"

where V; denotes covariant differentiation with respect to the funda-
mental tensor g;; of V,. If we put

(3) Hjil = ZeijimN:cA’
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then the second fundamental tensor H,, for N, is given by

(4) H;, = H,/N,,, where N,; =N,"G,,.

The Gauss and Codazzi equations for V,, can be written in the form
(5) Ruy = B0 B/ B B/ B;" + 2 € (Hiip Hyjr — Hijp Hys,)
and ’

(6) RyuoBi' BB/ N,” = Vi Hyyp— Vi Hyjp + Zey(Llyszjv'—kazHljy) ’
Yy

respectively (see [3]), where L, is the third fundamental tensor with
respect to the normals N, defined by

(7) Li:cy = (ViN:cA)-NyA (= —Liy:c)7

and Ry;; and R,,,, are the curvature tensors for V,, and V,, respectively.
The equations of Weingarten are of the form

(8) Vt' Nzl = — Hirx B,.A + 2 61/ Li:cy .N-v;l, WheI‘e 'Hi'z = Hfj:t gjr.
Y

~ 2. A totally umbilical surface. If H;' defined by (2) satisfies the
condition

(9) Hjia - gji.Hl’

where the vector H?, called the mean curvature vector, is given by
1 .. '

(10) H = — g H,},

then V,, is called a totally umbilical surface.
We assume that V,, is a totally umbilical surface.
Putting H, = H'N,,, from (4) by (9) we obtain

(11) Hy, = 9xH,,
and from (10) by (3) and (11) we get
(12) H' = )¢, H,N,.

Hence, using (1), we have
(13) H B = ) e, (H,).

z

Tﬁe mean curvature H of V,,, i.e., the scalar H such that
H = lzez(Hz)z ’

may then be written as
(14) H* = |H,HY,.
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By (8), in view .of (11), we have
(15) V,N} = —H,B}+ ) €,L,, N,
Yy

Differentiating (12) covariantly along V,, and using (15), we obtain

v, H Z‘ e, (0,H,) N, +20H 7, N>

— _Zez(Hx)zB‘—l-Z (0 Hz—l—Ze Ly, H,) N

Thus, if we adopt the notation
(16) Ay = 0;H,+ ) 6,Ly,H,
v

and use (13), then
(17) V.H' = —H,H'B}+ ) ¢, 4, N}
. T

Substituting (11) into (5) and making use of (13), we get
(18) Ry = Rluvm BllBk”ij B+ H,H®(g1;9x; — 91 Irs) -
Substituting (11) into (6), we have
(19) RlpvallBk“B'vN ©
(alH +' Ze Llyz ) ak] (ak z+2 Z kaa:Hu)glj
or, using (16),
(20) BoB' BB’ N,” = Ap gy —Apa 9y
Now, considering (12), (19), (7) and (13), we may find

(21) Rzmsz B B/ Hw _—‘[Vz (H He)g —Vi(H, H* )9i;].

3. Main results. We suppose that the space V, satisfies the condition
(22) Vcalﬂvw = 'Peai.;mu

where C,,,,, i8 the Weyl conformal curvature tensor of V, defined by

- — 1 _ - _ —
(23) Clﬂv;o = Rl/wa) - %——2- (le -R/w - Gh 'Rpw + Gpv le - Gyw ‘Rh) +

+ D=2 R(GlmG,,, —leGyw)7

@, 18 a vector in V, (not necessarily different from zero), and V, denotes
the covariant differentiation with respect to ¢ , in V,,.
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Let C,;; denote the Weyl conformal curvature tensor for V,,.

THEOREM. Let V,, be a totally umbilical surface in a space V, satis-
fying condition (22). Then, for V,,, the relation H?Cy ; = 0 holds.

Proof. From (22) and (23) we find
- — 1 _ —
(24) Vs Rlva = @, Rl;ww + n__2_ [Gﬁ.m( Vc Ryv - (erpv) -
- Gh( VcRuw _¢0R;un) + Gpv( Vrﬁlw - ‘paﬁlw) -
- Gyw ( Ve Rlv - (pcRAv)] -

1
T (n—1)(n—2)

Since G,,B; H” = 0, which follows from (12) and (1), by sum-
ming (24) with B,’B;B,*B;H® we obtain

(25)  (V.Ri.0)By'BB/B/H® = g, Ry, B/ BB/ H" +

( VBR - tle) (leGyv - GbGya)) .

+ [—9i(VeR,o— 9. R,0) Bi' B," H® + gps ( V,R,—¢.R,)B, B H"],

n-—2

where ¢, = ¢,B;’.

We differentiate (21) covariantly with respect to g;;. Then, by (9),
(17), and the antisymmetry of the temsor R,,, with respect to the
indices » and w, we have

(VeRiuo) By B/ B By H® + gy R, , H' B,* B H” +
+ e Rawo B H* By H® — H,H* R,,,,, B, B B}’ B," +

_ 1
+ 2 €, Apg Ry B Bi" By N,* = D) [VaVi(H,H®) gyj — V3 Vi (H HE) gy ] -

If we substitute (26), (18), (20) into this equation and consider (21),
then

In RA#"‘” H). Bky B]"'Hw = Gnr Eulvw H* Bli B]_”H K
= H;H*[ Ry — H,H (91915 — 91 9en) 1 —
1
n—2
+ gy (V. Ry — ¢, B1) By B H*] —

- [ _glj( Va Rmn _(psta))Bh‘Bk”Hm +

1
— — [ Vi (H H®) gy; — on Vi(H, H®) g35] +
2

1
+ 5 [VaVi (O gy = Vo Vil H HO 93] — ) e (Arg iy — Arai)

z



TOTALLY UMBILICAL SURFACES 109

or, if we use the notation

1 _ _
Ehk = -%——2— (VeRuw—¢eRnw)BheBk“Hw~

1 .
—5 Vs VelHH) =9 V(L HY+ D) 6 4po A,

(26) guRi,.H'BB’H"—g,. R,,,H B’B H®
= H, H* [lejh_HAHl(glhgkj—gljgkh)]+glehk_gkthl'
Contracting (26) with ¢* and assuming F = ¢"*E,,, we obtain
(27) (m—1)R,,,,H*B,*BH® = H,H°[R,;— (m—1)H,H*g,;1+ E;,— Eg,,.
Equation (27) shows that Ej is symmetric. Thus we have
(28) R,.,.H'B/BH®

i
_ H,_,He(m_l Rkj—HIH‘gkj) b (B~ Bg,).

Substituting (28) into (26), after an easy computation we can find

(29) H,H* [R,,,,.h- —

(9in Rkj — Gxn le)]

1
=1 (9nErj — GxnEr; — E(9in91; — 915 9n) ) — 95 Enge + s B -

Contracting this with ¢, by the symmetry of E,, we obtain

m 1 m(m—2) . m—2
HQH‘?(m_l By, — m—1 Rglh) = Tm—1 By — m—1 Egy,-
Hence ]
1 1 1
Ey = WEglh'}‘HgHQ[m_leh— m(m—2) Rgm]-

In virtue of the last relation, (29) leads to

X
e = —a. _
)
H,H [leh m_32 (9un Brj — 915 Bin + 915 Bin — Gien Byy) +

+ (m—1)(m—2) R(g“'gkj_gljgkh)] =0,

that is to
HQHQO'lkjh = 0’

which, by (14), completes the proof. }
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A Riemannian space V,, is called symmetric in the sense of E. Cartan if

VeRjwo = 0.
We see that, for every symmetric space, the relation
(30) VeCimao =0
holds. ¥

A Riemannian space ¥V, (n > 3) whose Weyl’s conformal tensor
satisfies (30) is called conformally symmetric [2]. It has been proved [6]
that there exist conformally symmetric spaces which are neither Cartan-
symmetric nor conformally flat.

A Riemannian space V, is called recurrent [8] if its curvature tensor
satisfies the relation

Vs Rl;wa) = @ Ri.pnn

for some vector ¢, # 0.
It is easy to verify that for every recurrent space the condition

(31) Vcaluvw = (paaluvm ) where Pe #* 07
is satisfied.

A Riemannian space V, (n > 3) whose Weyl’s conformal tensor
satisfies (31) for some vector ¢, = 0 is said to be conformally recurrent [1].
Roter [7] has proved the existence of conformally recurrent spaces which
are neither conformally flat nor recurrent.

In the sequel we assume n > m > 3.

As a consequence of our theorem we obtain the following

COROLLARY 1. If V,, i8 a tlotally umbilical surface in a Cartan-sym-
metric space V,, then V,, 18 conformally flat or its mean curvature H vanishes.

If H = 0, then V,, i8 necessarily Cartan-symmetric ([4], Theorem 5.2).

COROLLARY 2. If V,, 18 a totally umbilical surface in a-conformally
symmetric space V,, then V, i8 conformally flat or its mean curvature H
vanishes. )

If H = 0, then V,, is conformally symmetric ([6], Theorem 1).

CoroLLARY 3. If V,, is a totally wmbilical surface in a recurrent
space V,, then V,, 18 conformally flat or its mean curvature H vanishes.

If H =0 and ¢, 18 not orthogonal to V,, then V, s recurrent ([4],
Theorem 3.3). If H = 0 and ¢, i8 orthogonal to V,, then V,, is necessarily
flat ([4], Theorem 4.1).

COROLLARY 4. If V,, is a totally umbilical surface in a conformally
recurrent space V,, then V, is conformally flat or its mean curvature H
vanishes.

Let H = 0. If ¢, i8 not orthogonal to V,,, then V,, is conformally recurrent
[({5], Theorem 2). If @, is orthogonal to V,,, then V,, is conformally symmetric
[(5], Theorem 3).
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