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1. Introduction. Given a smooth, PL or topological manifold, one
can consider its group of automorphisms (i.e. diffeomorphisms, PL-
isomorphisms or homeomorphisms) endowed with a natural topological
structure depending on the category under consideration. The homotopy
theory of these spaces can be interpreted as a global (parametrized) ver-
sion of the classification of manifolds. For example, here we came upon
the topological space of smooth (or PL) structures on a topological mani-
fold and the parametrized h-cobordism theorem. Thus it is not a surprise
that the groups have a rich homeotopical structure.

This paper is a survey of results on the homotopy type of automor-
phism groups. We intended it to be comprehensible as much as possible
for non-specialists and for that reason we included a number of technical
theorems as well as proofs of several simple facts which should clarify
some points usually omitted in research papers. An extensive bibliography
is attached.

We shall use the following notation. The letter 4 will always denote
one of the three categories of manifolds: D (differentiable), PL (piecewise
linear) or Top (topological). If XeA and Y< X, then A(X, Y) will be the
group of A-isomorphisms of X onto X, equal to the identity on Y. We
shall abbreviate A(X, 0X) to A(X, 8). Bold-face letters will denote semi-
simplicial objects, e.g. A(X) will be the semisimplicial group of 4-auto-
morphisms of X. Moreover, we shall use the following symbols:

I  — unit closed interval,
D¥ — k-dimensional unit dise,
4 — standard g¢-simplex,

0, — orthogonal group of R,

2X — loop space of X, ‘

tM — tangent (micre-) bundle of M,

BGE — classifying space of a topological monoid G,

|S] — geometric realization of a semisimplicial complex 8.
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2. Topological structures on automorphism groups. Assume that M
is a smooth compact manifold. The natural structure on the group D(M)
of all smooth diffeomorphisms of M is the C"-topology, where 1 < r < o0,
i.e. uniform convergence of all partial derivatives up to order r. The
resulting space is a manifold modelled on a separable Hilbert space if
r < oo, the model being a separable Fréchet space otherwise. Let I'(z M)
be the space of smooth cross-sections of the tangent bundle of M and let
exp: tM — M be the exponential map. A chart around id,, is given by
the map I'(zM)—> C®(M, M): 8 +— expos restricted to an appropriate
neighbourhood of the zero section. It is known that for all » > 1 the re-
sulting spaces are homotopy equivalent. Recall that a manifold mod-
elled on an infinite-dimensional separable Fréchet space is homotopy
equivalent to a CW-complex and two such manifolds are homeomorphic
if and only if they are homotopy equivalent.

If M is a topological manifold, then we consider the group Top (M)
of all homeomorphisms of M as a topological space with the compact-
open topology.

In the PL case, the usual way to introduce topology goes through
semisimplicial complexes (see May [2] or Rourke and Sanderson [1]).
The same pattern of construction works also in topological and smooth
cases and it is often very convenient to work with the semisimplicial groups.
If we want to have virtual topological groups, we may pass to geometric
realizations.

The semisimplicial complex 4 (M) of A-automorphisms of an 4-mani-
fold M has, as a typical ¢-simplex, an A-automorphism F: AIX M —>A"xX M
commuting with the projection onto the simplex 4% The face operator
is induced by the restriction of F to faces of A%

If A = Top, then A(M) is isomorphic to the singular complex of
Top(M) and D(M) is homotopy equivalent to the singular complex of
D(M). Thus |D(M)| ~D(M) and |Top(M)| is weakly homotopy equiva-
lent to Top(M).

For a PL-manifold we have the semisimplicial complex PD(M)
of piecewise smooth homeomorphisms and PD(M) is homotopy equi-
valent to PL(M). If M is smooth, consider the PL-structure given by
a (-triangulation. There are natural forgetful maps of semisimplicial
complexes

D(M)—-> PD(M) ~ PL(M)—> Top(M)
indueing maps between geometric realizations
D(M) ~ |D(M)| > |PL(M)| ~ |Top(M)).

For a non-compact manifold M there is another topology on Top (M)
generated by sets

U,, = |g € Top(M): d(f(2), g(x)) < a(z) for z € M},
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where d is a fixed metric on M and a varies over all positive real-valued
continuous functions. This is the majorant topology (and similarly one
defines the C*-majorant topology). For compact manifolds and for some
important special cases it coincides up to homotopy type with the compact-
open topology. For a manifold with non-finitely generated homology
there is a difference in the local structure — only the majorant topology
gives a locally path-connected space. Since the majorant topologies are
not fitted to the semisimplicial constructions, we shall not use them.
The local structure of Top (M) is not fully known.

CONJECTURE. For any compact manifold M, Top(M) is a manifold
modelled on the separable Hilbert space.

The most important result in this direction is due to Cernavskif.

THEOREM (Cernavskil [1], [2]). If M is a compact manifold (or the
interior of a compact one), then Top (M) 18 locally contractible.

Since Top (M) satisfies the disjoint disc property, once one proves
Top (M) to be an ANR, the affirmative answer to the conjecture above
will follow from a criterium of Toruficzyk. The conjecture was settled
by Luke and Mason [1] for compact 2-dimensional manifolds. If it is
true, then the set of PL-isomorphisms of a PL-manifold lies in Top (M) like

Y ={{en}: ¢, eB,n =1,2,...;6, =0 for n large}

in I, ={{c,,}:20,,< oo},

at least for high-dimensional manifolds.

However, the homotopy type of PL(M) endowed with the compact-
open topology does not seem to be interesting, since we have the follow-
ing discouraging corollary to the theorem of Cernavskil:

COROLLARY. Let M be a compact PL-manifold and consider the set
PL(M) of PL-isomorphisms of M with the compaci-open topology. Then
the inclusion PL(M)— Top (M) induces a weak homotopy equivalence of
the identity components.

Proof. It follows from the concordance-implies-isotopy theorem
that PL-homeomorphisms are dense in the identity component of Top (M)
(cf. Kirby and Siebenmann [1]). If ¢: (D" d)—> (Top(M),PL(M)) is
a map such that Im¢ is contained in some contractible neighbourhood U
of id,,, then we find an extension of ¢|éD™ to a map y: D" —>PL(M)n U
using the following complement to the theorem of Cernavskii:

There exists a deformation of a neighbourhood of id, € Top (M)
to {id,} preserving PL(M). Thus PL(M) with the compact-open topology
is locally contractible.

Now, since U is contractible, ¢ ~ yreld2D". A deformation of an
arbitrary map ¢: (D", 9) — (Top(M), PL(M)) to PL(M) is developed
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easily using the density of PL(M) and such a subdivision of D" that each
simplex is contained in a contractible neighbourhood.

To study the homotopy type of automorphism groups it is necessary
to have global (“parametrized” in the semisimplicial language) versions
of basic theorems concerning manifolds. We recall now two such tools.
One of them is the parametrized version of the extending isotopy theorem.

For two A-manifolds ¥V and M and for a compact subset K of V, let
Emb ,(V, M; K) denote the semisimplicial complex with a typical simplex
being a fibre-preserving locally flat A-embedding f: 42X V> A4T'%x M
such that f~'(49x 0M) = A?x @V and f(z) =« for ze 47 x K.

If A £ PL and V is compact, we denote by Emb,(V, M; K) the
space of all locally flat A-embeddings such that f~*(0M) = @V and f
is fixed on K, with the C* or compact-open topology. If ¥ is not compact,
we endow the space Emb,(V, M; K) with the majorant topology. SupposeV
is a closed submanifold of M satisfying the conditions above.

THEOREM. The restriclion induces a Kan fibration

A(M,K)—-> Emb,(V, M; K).

The following variations of this theorem also hold:

1. The restriction yields a Kan fibration A(M)—> A(0M).

2. In C*®-category we have a locally trivial principal D(M, V)-fibration
D(M) - Embp(V, M). .

3. Top(M, K) — Embyp,,(V, M; K) is a Hurewioz fibration.

4. Given a base point x, € IntM, A # PL, the map

A(M)—IntM: > f(x,)
18 a Hurewicz fibration.

5. More generally, if A # PL and V 43 a closed locally flat submanifold
in Int M, then the map from A (M) to the space of closed embeddings of V into
IntM, induced by restriction, 18 a Hurewicz fibration.

The second tool provides “orthogonalization near a fixed point”.
Look first on the simple case of R".

LEmMMA. D(R* x D", {0} X D"UR* x 0D") contains, as a deformation
retract, the loop space Q2"(0,,id).

Proof. Q*(0,,id) is realized as the subspace of the considered
group consisting of diffeomorphisms which preserve the projection onto D®
and are orthogonal on each fibre R* x {r}. The deformation is given by

: hy(tz, y)
F(h,t)(z,y) = ( i ’hz(w’y)) for 0<t<1,

(dhl(O’ y)(z), '.'/) for ¢t =0,

where h(z, y) = (hl(wy Y)y he(2, ?/)) e R*xD".
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Now, an application of this orthogonalization process to a neighbour-
hood of a submanifold (it is particularly easy to proceed with the semisim-
plicial groups of automorphisms) gives the following (cf. Cerf [2], Antonelli
et al. [2], Burghelea and Kuiper [1])

THEOREM. Let V be a closed smooth submantfold of M such that VoM
= 0V and let U be a closed tubular neighbourhood of V. Then D(M, VUOM)
has the homotopy type of the subgroup consisting of such fe D(M, VUOM)
that f|U 8 a fibre-preserving map (U, V) — (U, V), orthogonal on each fibre.

COROLLARY. If U ts a collaring of 0 M, then D(M, 0) has the homotopy
type of the group D(M, U).

3. Some important special cases. At the very beginning, the differ-
ence between the smooth and PL categories or the topological category
is mirrored in the structure of A4 (D", 9). The group D(D" ¢) has many
non-trivial homotopy groups (we shall see later that it is contractible
only for small n), in contrast to the PL and topological cases.

THEOREM (Alexander trick). PL(D", d) and Top (D", 0) are conirac-
tible.

Proof. Topological case. Extend any f e Top(D", d) by the identi-
ty outside D™ to f' € Top(R"). The deformation of Top (D" 9) to {id}
is given by F(¢,f) = tf (¢ '), F(0,f) = id.

PL case. Let D x 4% be PL-embedded in B"** ag a convex neighbour-
hood of O € R***. Let us triangulate D" x 4* x[0,1] as the cone over
D™ x 4* x{0}u (D" x 4%) x [0, 1]. Any f: D" x 4* - D™ x 4* represent-
ing n,PL(D" 0) is equal to id on d(D" x 4*), hence extends by id to
a(D™ x 4*) x [0,1]UD"™ x 4* x {0}, and then linearly to D" x 4* x [0, 1].
This yields an isotopy rel D® x 4 from f to id.

LeEMMA. D(8"™, *) ~ D(D" 0) XO0,,.

Proof. Decompose 8" as the sum of two discs: 8" = D2UD}.
By the orthogonalization described in Section 2, D (8", *) has the homotopy
type of the subspace E of diffeomorphisms orthogonal on D% . The subspace
E is the total space of the principal D(D", d)-bundle over O, given
by restriction to D%} . The extension of any linear map from D" to 8"
determines a cross-section of the bundle, which must be therefore trivial,

The proof above applied to an exotic sphere 2, n>> 6,recognizes Dy(Z',»)
up to homotopy as the total space of a principal D(D", 9)-bundle over
80(n). The classifying map of this bundle is (see Section 7)

f: BO(n) > BD(D", 8) ~ 2"(PL,[0,).

Given 2" and an element a of z,(80(n)) we have the composition
of maps :

7u(Z, a): 85 80(n) 5 Q"(PL,,/O,,.) - Q*(PL/0),
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hence a homotopy sphere in 6, , = #, ,(PL/O), where 6, denotes the
group of diffeomorphism classes of homotopy k-spheres. The resulting
pairing

T‘.“: Ty (SO(”)) X @n e d OfH-‘

coincides (Hajduk [1]) with the Milnor-Novikov pairing defined geometric-
ally by Novikov [1]. It is known that there are examples of homotopy
spheres 2™ such that z, ,(Z", a) is non-trivial. If we compare the homotopy
exact sequences of the bundles corresponding to 8" and 2", then we see
that

m (D(8™) # =(D(Z™) for i =0,1.

Thus the homotopy type of D(M) depends on the differential struc-
ture imposed on M.

The argument applied in the proof of the preceding lemma gives
also

LeMMA. D(D*) ~D(8" ' xI,8" ! x{0}) xO0,.

The two lemmas above indicate that two groups should be of some
importance: D(D" 9) which shows the primary difference between the
topological case and the smooth one, and D(M xI, M X {0}) which meas-
ures non-triviality of diffeomorphisms of collars (as well as the difference
between the relations of isotopy and pseudoisotopy). We shall say more
on these spaces later.

4. Low-dimensional manifolds. The homotopy type of A(M) for
a compact 2-dimensional manifold M is quite well understood. First
of all, the groups n,Top (M) are known. In a sequence of papers, Lickorish
described generating sets for these groups. In the orientable case it is
enough to take one orientation reversing homeomorphism and one twist
around each simple closed curve from a set of generators of H,(M). By the
twist around ¢ we mean a homeomorphism equal to the identity outside
a collar ¢ X [0, 1] of ¢ and rotating ¢ x {t} by 2=t. If M is non-orientable,
one should add some other homeomorphisms (see Lickorish [2]). For
an orientable closed 2-manifold, Hatcher and Thurston [1] determined
relations satisfied by the generators given by Lickorish, providing a pres-
entation of =,D(M).

We have also the following description of the homotopy type of
components of D(M):

THEOREM (Earl and Eells [1], Gramain [1], [2]). If M s a compact
2-dimensional manifold, then the identity component of D(M) is homotopy
equtvalent to:

80, for M = 8* or M being the projective plame,

St x 8 for M = 8* x 8,
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80, for M being the Klein bottle, or the Mdobius band, or M = D?, or
M =8"xI,

a point in any other case.

The proof is based on the following

THEOREM (Smale [1]). D(D?, 9) t8 contractible.

Proof. Consider the fibration

Embp(I xI,R xI;{0}xIVR x0I)—> Embp({1} xI, R xI; {1} x oI).

The fibre of this fibration is D(D? 8) and the total space is contrac-
tible by the (parametrized) uniqueness of collars. Thus we have a homotopy
equivalence

D(D? 9) ~ QEmby({1} xI, R xI; {1} x oI).
The latter is a homotopy retract of QF, where
E = Embp({*} xI, 8' xI; {»} x oI),

since for the map induced by the inclusion R = 8' onto a hemisphere
we have the left homotopy inverse map given by lifting to the universal
cover. The proof will be completed if we show that QF ~ =.

Let 8 = D' U,D%, let D, = D? be the disc of radius 1/2 and con-
sider the fibrations

DD x1,0) % D(8* xI,d)—> Emb, (D', xI,8 xI;D xal),
D(8' xI, 9) L D(D?, {0}u aD*) — Emb (D, D*; {0}).
The composition j¢ is induced by the inclusion
D! xIc 8 xI =D*~IntD,c D*

and has a homotopy inverse given by an embedding of D? onto DL x I < I?,
which is isotopic to the identity. Since Emby(D,, D*; {0}) is homotopy
equivalent to 0,, 2j induces a monomorphism on homotopy groups.
This implies that £2¢ and 2§ are homotopy equivalences. Hence we infer
that QEmby(D, xI,8' xI; D xdI) is contractible. Finally, consider

Embp (DY xI,8" xI; {»} xIuD, xoI)
— Embp (DY, xI, 8'xI; D xoI)~ E.

Since the fibre is contractible (once more by the uniqueness of collars),
we have a homotopy equivalence

E ~ Emb, (DY, xI,8" xI;D. xal),
thus QF ~ x.

Recently A. Hatcher proved the same to be true for the 3-dimen-
sional disc:
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THEOREM (Smale conjecture). D(D?* 8) 8 coniraciible.
The triviality of n,D(D? @) was proved by Cerf [4]. In Section 7
we shall see that D (D%, 9) ~ = for ¢ < 3 implies

D(M) ~ |PL(M)| ~ |Top(M)]|

if dimM < 3. '

COROLLARY. D(8") ~ O, forn < 3; D(T™) ~ GL(n, Z) X T", where T™
¢8 the n-dimensional torus, n < 3.

There are -several results on D(M®) for some special 3-manifolds
(cf. Hatcher [10]). For example, if M is S8' x §° -(respectively, an infra-
solvmanifold, i.e. a T?-bundle over 8! with the gluing map in SL(2, Z)
having distinct real eigenvalues), then D (M) is deformed to the fibre-
preserving diffeomorphisms (bundle automorphisms). If M is a 3-manifold
with non-trivial torus decomposition, then components of D(M) are
contractible.

5. Concordance groups. The case of the homotopy trivial - pair
(M xI, M) is the only example of a general situation for which ecompu-
tational results are known. In fact, it is proved that the stable part of
the homotopy type of A(M x I, M) depends only on the homotopy type
of M and the groups =;D(M xI, M) are known for ¢ = 0,1. We shall
write A
C (M) =AM xI, M x{0})

calling it the concordance (or pseudoisotopy) group. We say that two auto-
morphisms f, g € A (M) are concordant (or pseudoisotopic) if f = F|M x {0}
and g = F|M x {1} for some FeA(M xI).

The problem of computing #,C,(M) was reduced by Cerf to a para-
metrized handle (or Morse function) problem. Let & (M) denote the space
of all C®-functions f: M x (I;0,1)->(I;0,1) and let &(M) be the subset
of functions without critical points. The projection p: M X I — I induces
the fibration '

¢: Cp(M)—~> &(M), [ pf,

the fibre being the space of isotopies starting at id,. Since the fibre is
contractible, ¢ is a homotopy equivalence and contractibility of & (M)
implies that

“t(f(M)’ J(M)) = w8 (M) = m;_,Cp(M).

Thus 7,0, (M) is the obstruction group for the problem of deforming
continuously a 1-parameter family of smooth functions to a family of
functions with no critical points. One can say that determination of
7,Cp(M) is the k-parameter version of the s-cobordism theorem. There-
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fore, it is no wonder that the higher Whitehead functors will be relevant.
The main result is the following

THEOREM (Hatcher and Wagoner [1]). Let M be a smooth compact
manifold of dimension at least 6 such that the firsi Postnikov invariant
k, € H*(n,M; n, M) 8 zero. Then

710Cp(M) = Why(n, M) DWh{ (7, M ; Zy X 7, M)

Here Wh, is the second Whitehead functor and Wh; (n,M; Z, X n, M)
denotes the quotient of the group (Z; X=m,M){n,M] of finite linear
combinations > a,z;, a; € Z, X n, M, x; € m, M, by the subgroup generated
by elements of the form ax —a'yry 'and d-1, a, b e Z, X n, M, x,y € m, M,
y acts on a with the result a¥ by the trivial action on Z, and the usual
one on =,M.

For a simply connected manifold M the theorem was proved first
by Cerf [8]. In this case Cp (M) is connected (it is known that Why(0) = 0
and triviality of Wh; (0; Z, X n,M) follows easily from the definition).
On the other hand, if M satisfies assumptions of the theorem above and
7, M # 0, then =,Cp(M) contains the non-trivial subgroup

Whit (n,M; Z5) « Whi (n,M;Z, X n,M).

A similar formula for #»,0 (M) was announced by Volodin [1] (cf. also
Hatcher [9] and Igusa [1]). For M = D" we have

7, 0p(M) = Z; DWhy(0).
For concordances in the two remaining categories we have
7tgOp(M) = 7o |Cpr(M)| = 7¢Crop (M),
but the higher homotopy groups differ in general (see Section 7).

6. Block automorphisms. The richness of the homotopy structure
of automorphism groups arises from its dependence on the manifold
(topological, PL or smooth) structure rather than on the homotopy type
of the underlying manifold. This manifests in the strength of the isotopy
relation and therefore one is tempted to consider first a weaker relation
and then to compare it with the isotopy. The concordance relation defined
in the preceding section is a natural candidate for this role.

By Zi(M , 0), the complex of bloock automorphisms of M, we mean
the A-set whose standard k-simplex is an automorphism

p: M x A% > M x4*

such that ¢(M x 8,4*) c M x 8,4* and ¢|dM x 4* = id (9,4* denotes
the ¢-th face of 4*). The face operators are given by restrictions to the
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faces of A*. Similarly we define A (M) and the 4-set é(M ) of block homo-
topy equivalences of M. The A4-zsets A(M), ﬁ(M , 0) and é(M) satisfy
the Kan condition. .

It is easy to see that =, A(M) is the set of equivalence classes of the

concordance relation and n,,zi(M ) is isomorphic to the factor of 4 (M x S8*)
by the subgroup generated by automorphisms extendable to M x D¥*!
and this factor group is in turn the %-th concordance homotopy group
n,(A; M) defined by Antonelli et al. [3].

We have the following inclusions of semisimplicial complexes:

A(M)c A(M)
n ~ N
G(M) c G(M).

_The homotopy types A(M) and fi(M ) usually differ, but for G(M)
c G(M) the situation is simple.
LEMMA. The inclusion G(M) < é(M ) t8 a homotopy equivalence.
Proof. Let A, = 84*—9,4* and assume that p,: M x4, - M and
pa: M x4, - A, are the projections. Suppose that f: M x4, > M x4,
is a homotopy equivalence preserving faces and that f|M X 04, commutes
with the projection onto 94,. Using the homotopy

filz) = (tp,(w) + (1 =) paf(x), Plf(-'l’))

we extend f over 4* = A, x I so that the restriction over ;4 commutes
with the projection onto 0, 4*.

The block automorphisms are compatible, via surgery, with block
homotopy equivalences. Let f e é(M , ) represent an element of
n,,(é’(M, 0), ﬁ(M, d)). It determines an element of hY (M x D¥, 8),
the group of homotopy A-structures on M x D* (mod d(M x D¥)). This
correspondence induces a bijection

m(G(M, 9), A(M, 8)) > hS (M xD* 9) for diimM +Fk > 6.

Let G/A denote the homotopy fibre of the natural map BA — BG,
where BA is the classifying space for stable bundles in the category A
(i.e. vector bundles, PL-bundles or Top-bundles) and B@G classifies stable
spherical fibrations. We have the exact sequence of surgery for dim M 4k > 6,

—~ [Z¥1(M[9), @[A] S L} ppr(m M) - m (G (M, 8), A(M, )
—[Z¥(M9),G|A] S L2, (n, M), dimM =,
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where Lf(=, M) is the Wall obstruction group for simple homotopy equi-
valences and @ is the surgery obstruction map.

Since é(M ) is homotopy equivalent to G (M), we have

COROLLARY. The homotopy type of A (M, 0) ts determined, up to exten-
ston, by the homotopy type of M.

Since the Wall groups of the trivial group are known to be (k> 5)

0 for & odd,
%(0) = =, (G/PL) =1Z; for k =2 (mod4),
Z for k =0 (mod4),

the exact sequence above for M simply connected and A = PL or Top
splits into short exact sequences

0> m,(G(M, 9), A(M, 0)) -~ [8*(M[3), G|A] > =, ,,(G[PL) 0.
If M is smooth and simply connected, then we get exact sequences
bPy i1 > m (G(H, 8), DM, 3)) > [8(M /), G/0] > m, (G [PL),

where bP, ., is the group of isomorphism classes of homotopy spheres
that bound =-manifolds.

Computing :vz,,(A~(M ), A(M)) is equivalent to deciding whether an
automorphism of M x 4* which preserves fibres M x {z} for x € d4* can
be deformed mod M x d4* to a fibre-preserving automorphism. This
k-concordance-implies-k-isotopy problem was studied by Burghelea,
Lashof and Rothenberg [1] (see also Millett [1] and [2]).

Let N <« IntM be a compact submanifold with boundary, dimN
= dimM. Then there is an injection

a: (A(N, 0), A(N, 8)) ~ (A(M, 9), A(M, 8))

defined by extension of all automorphisms by the identity to M.

THEOREM (Burghelea, Lashof and Rothenberg [1]). Suppose that
n =dimM = dimN >5, »dN =mxN for ¢ =0,1, m(M,N) =0 for
t<r,r<n—4and g N =0fori<k<r. Then
ay: m(A(N, d), AN, d)>mn(A(M, d), A(M, 9))
t8 an isomorphism for
. min(2r—3,r+%k—2) for A =D,
IS\ min(2r—3,7+%k—2,7r+3) for A = PL or Top.

COROLLARY. 7 AM), A(M ) depends only on the (j-+ 2)-dimensional
skeleton of M.
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Applying this theorem to N = D" and using the Alexander trick
we have

COROLLARY. If M™ i8 k-connected, k < n —4, then

n(D(M, 9), D(M, 9)) = =,(D(D", &), D(D", 3)) for i <2k—3
and
n(A(M,d), A(M,d) =0 for i <min(2k—3,k+2), 4 = PLor Top.

There is a generalization of the theorem to the case of a tangential
homotopy equivalence N — M. If N is not a submanifold of M, then there
is no natural map

(AN, 8), AN, 8)) > (A(M; 9), A(M, 9)),

but we may compare the homotopy groups of these pairs assuming M
and N to be of the same tangential homotopy type. Two spaces X and Y
are said to be of the same r-homotopy type if X" and X', the r-th Postnikov
terms in the Postnikov towers, are homotopy equivalent. A chosen homo-
topy equivalence h: X" — Y” is called an r-homotopy equivalence. If
h: X" — Y"is an r-homotopy equivalence, there exist an (r + 1)-dimensional
CW-complex K and continuous maps f: K - X and g: K - ¥ with n,(f)
= m(g) for ¢ <r+1; further, if v: X - X" and »: Y - ¥" are natural
maps in the Postnikov tower, then g, -fi' = v3'-hy-u, on = X, i <.
Two manifolds M and N are said to be of the same tangential-r-type if
they are r-equivalent and if f*z,, = g*ty, f: K > M, g: K — N as above.
If r+1 < {n, we may assume above that f and g are embeddings. Let P
and R be regular neighbourhoods of f(K) and g(X), respectively. Then
there is a homotopy equivalence a: P - R which is covered by a bundle
map ra: 7P — vR. Hence we may assume that a is an immersion-of P in
Int R. By the general position we may take a: P — IntR as an embedding.
Then we have the inclusions

a: (A(P, 9), A(P, 8)) > (A(R, d), A(R, 9))
induced by a and

p: (AP, 9), AP, 9)) > (A(M, 9), A(M, ),

y: (A(R, 9), A(R, 9)) > (A(N, 8), A(N, 9))

induced by injections P - N and R — N, respectively. Thus, for all &
for which the map

Y ”k(fi(R’ 3), A(R, 3)) "’”k(‘i(Nv d), A(N, a))
is an isomorphism, we have a map
By ay vz's m(A(N, 8), AN, 0) > m(A(M, d), AM, ).
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An immediate consequence of the previous theorem is the following
THEOREM (Burghelea, Lashof and Rothenberg [1]). If M" and N
are k-connected compact manmifolds of the same tangential r-type, dimM
=dimN>5,n2>r+1>k then
(AN, 0), AN, 9) = =(A(H, 9), A(M, 9))

Jor
i < min(2r —1,r+%k—1) for A =D,
“|min(2r—1,r+%k—1,r+3) for A =PL or Top.

These results may be applied to get similar informations on the group
0, (M) of concordances of M. The map

p: C4u(M,0)~> A(M, 9)
defined by restriction to M x {1} is a fibration with A(M X I, 0) as a fibre.
Similarly,

P: C(M,0)~ A(M, 0)

is a fibration with a fibre A(M X I, 9). Since the diagram

C.(M, 8~ C(M, 9)

9 s
A(M,0)—~ A(M, 0)

commutes, we have a long exact sequence
> m(A(M xI,8), A(M X1, 8)) > m,(C4(M, 9), Cs(M, 0))
— m,(A(M, 8), A(M, 8)) > m_,(A(M xI, ), A(M x1,38)) >

Since € (M) is contractible (any concordance is concordant to the
identity), the sequence above takes the form

— my(A(M x I, 8), A(M XI,8)) > m_,C (M, )
- (A(M, d), A(M,d))>m_,(A(M xI,3), A(M xI,d)->.
Let N <« Int M be a compact submanifold (with boundary) of codi-
mension 0. Then there is an injection a: C (N, 9) > C (M, 0) defined
in' the same way as for A(N, 9) > A(M, 0) and the following diagram

is commutative:

> A(M xI,8), A(M x I, 9))>m_,C(M, 8)>m A(M, &), A(M, 8))—
. 1 oy . 4
>m AN X1, 9), AN x1I, ) > m_,C(N, 8) >mA(N, 8), AN, 9))~>
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Thus the preceding theorem implies analogous results for #,,_,C (M, 9)
as well as the following

COROLLARY. The i-th homotopy group of C,(M™") for i < n—7 depends
only on the (1+ 3)-dimensional skeleton of M.

Note that by the Alexander trick we know now that #,Cp. (M) =0
for any 2-connected compact manifold M, while =,Cp(M) = Z, DWh,(0)
(cf. Section 5).

7. Comparing automorphisms in various categories. If we know
one of the spaces D(M), Top(M) (e.g. for M = R" or D"), then we certainly
will appreciate information on the relation between the smooth and topo-
logical automorphisms. This is the general pattern of the theory of struc-
tures on manifolds: passing from the homotopy type to the homeomor-
phism class, then to the PL and smooth isomorphism classes. With except
for homotopy equivalences, it works also for automorphisms.

We would like to mention one possible application of the comparison
theory. Since the homotopy structure of the smooth concordance group
is closely related to singularities of smooth functions, the connection is
given, via the restriction map C,(M)—> D(M), h+ h|M x {1}, by the
Cerf approach to pseudoisotopies. Since by the Alexander trick, PL and
Top singularities are considerably simpler, the difference between auto-
morphisms reflects the behaviour of smooth singularities.

Consider first the case of block automorphisms of a smooth compact
manifold M. Homeomorphisms are simple equivalences, hence using the
8-cobordism theorem one can deduce that the natural map

. (Top™ (M, 9), D(M, 8)) > Fp(M x D*, 9)

is a bijection for n-+k> 6, &,(M x D*, 9) being smooth structures on
the topological manifold M x D* fixed on &(M x D*). Thus from the
theorems of Hirsch, Mazur and Kirby, and Siebenmann we have

THEOREM (Antonelli et al. [3]). The stable differential induces an
tsomorphism
m (Top™ (M, 8), D(M, 8)) 5 [Z*(M3), Top|0] for k+n> 6,

and similarly for (Top™ (M, 9), PL™(M, 8)) and PL™(M, 9), D(M, ).

Now we pass to the main theorem concerning usual groups of auto-
morphisms. Let 7,[0,] be the principal O,-bundle associated with the
tangent vector bundle of M, and let 15 [Top,] = 74[0,] X0, Top, be the
associated principal Top,-bundle. Let

ty[Top,[0,] = vy [Top,] xTopnTopnIOu!
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the associated bundle with fibre Top,(0,. If OM 5 0, then the restriction
of the bundle 7, [Top,/0,] to M contains the bundle zy,,[Top,_,/0,-.]-
The bundle 7, [Top,/0,] has the natural section

o: M = tM[On] XOnOnlon > Ty [On] xOnTopnlo'n = TM[TO])”/O”].

By smoothing theory (see Kirby and Siebenmann [1]) the isotopy
classes of smoothings of the topological manifold M are in one-to-one
correspondence with the homotopy classes of sections of 7, [Top,/0,].
If N is a compact smooth submanifold of 0.M of codimension 0, denote by

I‘N(tM [TopnIOnL ToM [Topn—llo —-l]’ 0')

the space of continuous cross-sections of v,,[Top,/0,] which agree with o
on N and whose restrictions to 0 M are cross-sections of z,,,[Top, _,/0,_,],
with the compact-open topology. If h: M - M is a homeomorphism of M,
then the topological differential dh is an equivalence of the tangent
vector bundle 7,, to itself. Thus dh defines a vector bundle reduction of
the underlying Top, bundle. The space of vector bundle reductions of z,,
may be identified with the space I'(ty[Top,,/0,]). Since the composition
with the vector bundle equivalence does not change vector bundle reduc-
tions, the differential d induces a semisimplicial map

Top(M, N)/D(M, N) - 8I'Y (14 [Top, 0,1, Tou [Top,-,/0,-1], o),

where 8 denotes the singular complex functor.

The following comparison theorem was proposed in 1969 by Morlet [2]
and proved by Burghelea and Lashof [1] (cf. also Kirby and Sieben-
mann [1]):

THEOREM (Morlet). Let M be a smooth compact manifold, AimM = n
# 4. If N # oM, assume also dimM =+ 5. The map

Top(M, N)/D(M,N) IW(TM[TOPnIOn]y Tou [T0py—1/0y-11, 0),

induced by the differential, induces an injective correspondence for connected
componenis and a weak homotopy equivalence on any connected component.
Analogous results hold for Top|PL and PL|D cases.

CoroLLARY 1. BD(D", 0) ~ Q"(PL,/O,,).
Proof. The Alexander trick implies that

BD(D", d) = |PL(D", 8)/D(D", 9)|.
By Morlet’s theorem,
|PL(D" 8)/D(D", 8)| ~ I'*""(r,,[PL,[0,]).
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But the bundle r ,[PL,/0,] is trivial, whence
"7}z, ,[PL,/0,)) = Maps (D", 8D"; PL,[0,, +) = 2*(PL,/0,),

where * denotes the base point of PL,/O,.

Similarly, BD(D", 9) ~ 2"(Top,, [/0,) for n s+ 4.

COROLLARY 2. Q"(Top, [PL,) i8¢ homotopically trivial for n + 4.

Thus the homotopy groups of D(D" 0) are the unstable homotopy
groups of PL, /O, . Antonelli et al. [2] have shown that the group D (D", 9)
does not have finite type but it is not known yet whether =, (PL,/O,) are
finitely generated. Some non-trivial elements of =, D (D", 0) were found
by Antonelli et al. [2], [3] (cf. also Burghelea and Lashof [1]). These ele-
ments often give non-trivial elements in x, D(M") under the natural
map =, D(D" 0) - =, D(M™) induced by an embedding D" - M™.

One can prove (cf. Kirby and Siebenmann [1]), using contractibility
of D(D", 0) for n < 3, that Top,/PL, and Top, |0, are contractible for n < 3.

COROLLARY 3. D(M) ~ Top(M) ~ |PL(M)| ¢f dimM < 3.

Following Burghelea and Lashof [2] we can apply Morlet’s theorem
to concordances. If U, V <« X, let P(X; V, U) be the space of paths
in X beginning in U and ending in V, with the compact-open topology.
Write

Pn = P(Topu+l/0a+l; TOP,,/O,,, *)
and
Rn = P(Topn+l/0n+l; Topnlon’ Topnlon)'
We have the fibration
P,—>R, 5 Top,[0,, p(w)=w(0).

Let 7p[R,] = ty[Top,] X70p, B be the associated fibration with
fibre R, . Then we have the fibration

P, > ty[R,] 5 ty4[Top,[0,], qlz,w] = [z, w(0)].

Let t5[P,] = o*ty[R,] be the bundle induced from 7z, [EK,] under
the section ¢ of 7, [Top,/0,] corresponding to the isotopy class of the
given smooth structure on M. Morlet’s theorem may be paraphrased in
this case as an equivalence

CTop(M)ICD(-M) ~ SP(“M[Pn])'

Analogous . deseriptions are obtained also for Cp,,(M)/CpL(M)
and Cpy (M)/Cp(M).

The same arguments as in Corollary 1 applied to C,(D", ) give the
following

CoroLLARY 4. BCp(D") ~ Q"P(PL,,,/0,,,; PL,[0,, *).
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It is known that =,(PL,,/0,,,,PL,[O0,) =0 for i< n+1. Since
7yCp(D™) = 0 by Cerf’s theorem,
7"'n+2(1')1;11.+110n+1) PLn/On) =0
and we have :
COROLLARY 5. The natural homomorphism n,Cp(M)—> n,Cpy (M) is
an isomorphism for ¢ = 0 and an epimorphism for ¢ = 1.

The groups =,Cp(M) and x,Cp;, (M) differ in general (see the remark
at the end of Section 6).

Since m;(Topy,,/PL,,,, Top,[PL,) = 0 for all +,n > b, we have
COROLLARY 6. n,Cp; (M™) = 7,Cp,,(M™") for all §,n > b.

A difference between smooth and PL cases is distinctly noticeable
for concordances of the n-sphere. Chenciner [1] has shown that Cp(8")
~ Op(D") and, consequently, from Corollary 2 we obtain

Cp(8") ~ Q"'P(PLyy1[Ops1, PL, 0,).
It is known (cf. Kuiper and Lashof [1]) that

ICPL(Sn)I NP(PI’»-i-l/OfH-l’ PLnIOn) .
Thus we have
COROLLARY 7. Cp(8") ~ Q"+'Cp (8").
The following diagram of fibrations shows that comparison theorems

and computations of homotopy groups of A (M)]A(M) are parallel in
some sense:

X(M) - D(M)/D(M)->Top™ (M)/Top (M)

N ¥ '
Top(M)/D(M) - BD(M) -  BTop(M)
{ v

Top™(M)/D(M)-> BD(M) - BTop™ (M)

Note that Top™ (M) /ﬁ(M ) is a sum of components of the space of
smooth structures on M, thus
ny(Top™ (M), ﬁ(M)) >~ [Z*M, Top/O] for i> 0.
A similar diagram can be written for (G(M), D(M)):

YiM) »ﬁ(M){D(M)—> {1}
G(M)/D(M)~> BD(M) -BG(NM)

R R R
G(M)/D(M)—~ BD(M) - BG(M)

2 — Colloquium Mathematicum XLV.1
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Hsiang and Sharpe succeeded in computing the #,-part of the homoto-
Py sequence of the first vertical fibration and used this to determine
7o D(T™) for high-dimensional tori I™.

THEOREM (Hsiang and Sharpe [1]). If the first k-invariant of M
vanishes and dimM > 5, then

ny (D(M)[D(M)) = 7y (Cp(M))/{c+ &5}

Here s =(—1)4"M and ~ is an involution on Why(m, M)®

®Wht (m M ; n, M x Z,) induced by the inverse map of =, M and Stiefel-
Whitney classes. It seems probable that this isomorphism is induced by
the natural map

Cp(M)—>P(D(M); D(M),id).
COROLLARY. If n > 6, then there i3 an exact sequence
0 > Why(Z"; Z,)[{c + T} DhSF p(T™ x 8*; T* x {1}) > #,D(T") - QL,(Z)~0.

There i8 a generalization of this theorem to higher homotopy groups.
Note first that we have an involution on C (M) that arises from the invo-
lution 7 on A(M x I, 0) defined by z(¢)(x, t) = ¢(x, 1 —1) for any ¢ in
A(M xI, 0), x € M, t € I. The involution is defined first on the identity
component of C,(M)/I, (M), where I,(M) is the space of iso-
topies of idy . In any class a e(CA(M)/IA(M))o choose ¢ € C4(M) such
that ¢ | M X {1} = id,; and write t(a) = [¢], where¢(z,t) = @(2, 1 —1).
Since I,(M) is contractible, we have a homotopy equivalence C,(M),
~ (0’ (M) (M ))o, hence a homotopy involution on C,(M),, being
a homomorphism of H-spaces. In the smooth case the involution is induced
by the involution on &(M) (the space of smooth functions on M x I
without critical points) given by f i f, f(z,t) = 1 —f(x, 1 —1).

Let G be an abelian 2-local group. Since multiplication by 2 is an iso-
morphism of @, any involution v on G decomposes @ into a direct sum
Gt DG, where Gt={geG: 7(9) =g} and G = {ge@: ©(9) = —g}.
A similar decomposition exists for an involution v on a commutative
OW H-group X localized at odd numbers. For any CW-complex K, [K, X 44]
is an abelian 2-local group with involution. Thus

[K) Xodd] = [K, Xodd]+ X [Ka Xodd]— .
It follows from the Brown theorem that functors [-, X 43]% and

[, Xoaal™ are representable. If X}, and X ;4 denote the classifying spaces,
then X 44 ~ XJ3 X X534 In particular, we have a decomposition

C4(M)oaq ~ O (M)faa XC i (M)gaq-
THEOREM (Lashof). There exists an s-equivalence
(A", 8)] A(M", 8))oaa ~ C((MMG",
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where
. [»n12—-5] for A =D,
" |\[n/6—5] for A = PL or Top.

8. Stable concordances and algebraic K-theory. One can now think
of the following program to determine homotopy groups of automorphism
groups: compute the block automorphism group using surgery, then
find the homotopy of the concordance group and put these two pieces to-
gether. It is the second step which makes this program rather hard to exe-
cute. Only =, and =, of the concordance group are more or less known and
there is no hope that the method of computation extends to higher homo-
topy groups. However, we know that low homotopy groups of C, (M)
depend only on the homotopy type of M and it will be helpful to have
homotopy functors containing those “homotopical parts” of C (M)
and properly related to the algebraic K-theory. In fact, such functors are
now described to be the stabilized (with respect to dimension) concordance
groups. The stabilization map t: C(M) - C(M X I) is defined by ¢ > ¢ X id;
and by the stable concordance group of M we mean the group

C (M) = limC,, (M x D).
k
Remark. We have been decided to work with concordances equal
to the identity on 0M X I, therefore we must slightly improve the defi-
nition of ¢. This makes no problem since (M x I, M x {0}) is isomorphic

to(M xI, M x {0}uoM xI).
THEOREM (Hatcher [7]). The stabilization map

i8 [n/6 —b]-connected and the stable concordance group functor EPL extends
to a homotopy functor on the category of compact polyhedra.

The comparison theorem of Morlet allows us to transfer this result
to the smooth category. Note first that the homotopy equivalence

Cpr(X)[Cp(X) - 8% (72 [Py, x])
applied to X = M™ x I yields a homotopy equivalence
Cp(M" X I)|Cp(M" X I) - ST (74 [QP, ).
The stabilization map induces a map

t: Cpr(M)/Cp(M) — Cpr(M X I)[Cp(M XI).
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This map is related to the suspension map: if 8: P, - P, ,, is adjoint
to the usual suspension map > P, - P,,,, then there is a commutative
diagram

Cp.(M™)|Cp(M") L 'SIw(TM[Pn])
It 4
Cpr(M" xI)[Cp(M" x I) & 8™ (zy4[QP,,,]),

where the right vertical arrow is induced by s.

Elaboration of this diagram for M = 8" x D* gives

PROPOSITION (Burghelea and Lashof [2]). The map s: P,— QP,,,
i8 [n/[12 4+ n —3]-connected.

This implies in turn the following stability theorem for smooth con-
cordances:

THEOREM (Burghelea and Lashof [2]). The stabilization map Cp(M)
-+ O0p(M xI) t8 [n[12 —b]-connected.
The stabilization map generalizes to a transfer map

z: Cp(M) - 0p(8(%)),

where ¢ is a smooth vector bundle over M and 4(¢) is the disc bundle
associated with £. This map can be obtained as follows. Recall that Cp, (M)
and Op(8(¢&)) are homotopy equivalent to &(M) and &(8(£)), respec-
tively. We define the map v: &(M)— £(8()) by =(f) = fop, where p
is the projection of the bundle 4(&). It is easy to see that for £ being the
trivial line bundle the stabilization map and the transfer coincide up
to homotopy.

Now we have a general stability theorem:

THEOREM (Burghelea and Lashof [2]). For any vector bundle over M",
the map v: Op(M"™) - Cp(8(&)) i [n/12 —5]-connected.

Remark. There is no reason to expect that the stability range is
the best possible.

We can extend the stable concordance group functor to a functor
on the category of compact polyhedra in the standard way, defining

C4(K) = im0, (N,(K)),

where N, (K) is a regular neighbourhood of K in 8" for sufficiently large n.
For any compact smooth manifold M the transfer induces a homotopy
equivalence -

lim Op (M x D*) - Cp(M).
n

The following is a consequence of the theorem of Burghelea, Lashof
and Rothenberg: '
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THEOREM. C;, i8 a homotopy fumcior.

Morlet’s theorem can be used once more to compare the PL and smooth
stable concordance functors. If

D'c M*<c D* and O%M)=0,(M)|0,(D?),
(M) x C (D7), whence
(M) xCy(#).

PROPOSITION (Burghelea and Lashof [2]). n,(E}L(K) /5},(K)) i8
a homology theory that comes from the spectrum # = {P,}, i.e.

then there is a splitting C (M) ~ 0%
5A(M ) ~ 5?4

(0%, (E) 0% (E)) = lim,,, (KA P,).

Another homology theory can be obtained by stabilization of the
functor C,. If we let

0% (E) = lim Q*C, (2" E),

then simple computations show that n.E;.L is a homology theory that
comes from the spectrum # = {P,}.

COBOLLARIES. 1. The groups m, C(K) are determined up to extension
by stable PL concordance groups.

2. n,C4LK = 0.

The next problem is to relate the stable functors O, to algebraic
K-theory as is prompt by the computation of =,0. Note that by the cor-
ollaries above it is sufficient to work only with the functor Cpy,.

Look first on the Whitehead functor Wh.. The groups Wh(@) for
¢t = 1, 2 were defined algebraically long time ago and it is known (cf. Loday
[1]) that Wh,(@) is the cokernel of a natural map h;(B@, K ) > K;(Z[G]),
where h(-, K,) is the homology theory given by the Gersten-Wagoner
spectrum for K(Z). In general, the Whitehead groups may be defined
(cf. Waldhausen [2]) as the homotopy groups of a space Wh(@) such that
there is a homotopy fibration

h(B@) - K (Z[@]) - Wh(&)

with & being a functor from the category of spaces to itself such that m.h
i8 a homology theory.

The Whitehead groups describe only a part of the homotopy struc-
ture of Op. (M) (in 7,Cpy (M) the remaining part is Whi (=, M ; Z, X 7y M),
a factor of =j(QM)), thus the functor K should be enlarged analogously
to passing from Wh(n,M) to Cp.(M). Therefore, we would like to have
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an algebraic K-theory W defined for spaces rather than for rings, together
with a map

QW (M) - T (M)

which is a homology approximation (i.e. the homotopy fibre of this map
yields a homology theory). Such a theory was constructed by Wald-
hausen [3].

The functor K is, as was indicated by Waldhausen and rigorously
treated by May, a special case of a functor defined on rings up to homotopy
which generalizes Quillen’s algebraic K-theory (cf. May [1]). We shall
sketch this construction.

Let H be Q®X*(2XuU=*) or a topological ring, which are, in our
context, the most important examples of rings up to homotopy. Then
n,H is a ring and we have the natural map d: H - n,H. Let M, (H)
be the H_-space of all (» X n)-matrices with entries in H (with the juxta-
position given by the usual composition of matrices). The map d induces

A
a map d: M,(H)—> M,(n,H) of H-spaces. Let GL,(H) be the space of
matrices from M,(H) with image under d invertible in M, (n,H), and
define

PN N\
GL(H) = limGL,(H).
Then put
VAN
K(H) = B*GL(H),

where Bt is a superposition of the classifying space functor and the -+
construction of Quillen. For a discrete ring R, K (R) coincides with Quillen’s
K(R) and d induces a map

K(H) > K (n,H).

Definition. W(X) = K(Q°Z®(Q2XuUx)).
Waldhausen has constructed a homology approximation

QW (X) > |Cp (X))

with fibre being a homology theory given by a spectrum obtained from
an infinite delooping of K(2*ZX%). In fact, the original definition of W,
used to construct the homology approximation, differs from the one
described above, but Waldhausen states that they are equivalent.
We may now come back to the computation of C(M). The last step
to be done is to determine the homotopy groups of W(M). There is hope
(and some examples of effective computations) that this may be performed
after localization at @. It is caused by the fact that homotopy type of
O X> is known (to be trivial) only after localization at @. In particular,
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this implies (cf. Waldhausen [3]) that K ( PPI°(QM vy -n))Q is homotopy
equivalent to K(|Z[ASM]|)q, where ASM is the loop group of Kan of
the singular complex SM of M and Z[ASM] is the simplicial group ring.
For example, W(#)o is homotopy equivalent to K(Z)y, hence

Q ifk=4i+1,
0 for other %k

by the calculation of =, K(Z)y due to Borel.

There are also more general results concerning W (M), with appli-
cations to computation of homotopy groups of D (M), (cf. Burghelea [4]
and [6]). The more detailed exposition of Waldhausen’s work and its
applications will be given by the first-named author in a subsequent paper.

mW(*)g = {
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