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ON A GAME OF SIERPINSKI
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Introduction. A game of Sierpinski, considered in this paper, is an infinite
positional two-person game with perfect information. Lately, there have
appeared many papers about such games and their applications to some
mathematical constructions.

The first infinite positional game with perfect information was defined
by S. Mazur about 1928. But before that, in 1924, a certain infinite positional
game was implicitly applied in Sierpinski’s paper.

Theorems concerning the existence of winning strategies in the Mazur
game were proved by S. Banach and S. Mazur in the interwar period, but
they were published only in 1957 by Oxtoby [8].

In 1924, Sierpinski [10] proved that every uncountable Borel set con-
tains a perfect subset. In the proof he made use of some multivariate function
of sets, by means of which Telgarsky [11] defined a topological game, where
the function becomes a winning strategy of Player II. This game will be
called the game of Sierpinski and denoted by S(X, Y). The game of Sierpinski
shares some features with the above-mentioned famous Banach-Mazur game
(see [9]) and with its generalizations studied by Morgan II [6]. A certain
modification of the Sierpinski game was considered by the author [4].

Definitions and notation. We define the game of Sierpinski S(X, Y) as
follows. Let X be a subset of a topological space Y. Player I chooses a set
A, c X. After that, Player II chooses a set B, — A; such that

IBII > NO if |A1| > NO’ Bl = 0 if IAll s No.
Assume inductively tha; A, o B, >...5 A, > B, have been chosen. Then

Player I chooses a set A,,; = B,. After that, Player II chooses a set
B,y © Ay+; such that

Byssl > Mo if |4gss] > No,  Byyy =@ if |4, < No.
Player II wins the play (4,, By, A,, B,, ...)) of the game S(X, Y) if
NB, < X;

otherwise Player 1 wins.
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A strategy of Player 1 is a function s defined for all finite (including
empty) decreasing sequences (A4,, B,, ..., 4,, B,) of subsets of X, so that
s(@)= A, = X, and

s(A,, By, ..., A,, B)=A,., =B, for each neN.

A stationary strategy of Player 1 is a function ¢ defined for all subsets of X
and for the empty set such that t(()) = A, < X and t(B) = A < B. A strategy
and a stationary strategy of Player II can be defined similarly. For Player II
we assume in addition that B,,, (B) is an uncountable.-set if 4,,; (4) is an
uncountable one, and B, ., (B) is the empty set if A,,, (4) is a countable set.

In this paper we shall use the following notation:

I11S(X, Y)({I1S(X, Y)) means that Player I (Player II, respectively) has
a winning strategy in the game S(X, Y).

I TF S(X, Y)(I1 { S(X, Y)) means that Player I (Player II, respectively) has
a stationary winning strategy in the game S(X, Y).

The game S (X, Y) is said to be determined if either Player I or Player 11
has a winning strategy in S(X, Y).

First we shall show the following

THEOREM 1. Let X be a subset of a separable metric space. If 11S(X, Y),
then 1 { S(X, Y).

For the proof of Theorem 1 we refer to [3], where the construction of F.
Galvin deals with a fairly general class of games.

Tueorem 2. If II1S(X, Y), then 11 f S(X, Y).

Proof. If Y is a separable metric space, then Theorem 2 results from
[3], Corollary 15. The construction presented there was slightly modified and
adopted for the modified game of Sierpinski Sy (X, Y) (see [4]). If Y is any
topological space, the proof for the game S(X, Y) is analogical to the proof
for the game S, (X, Y), so it is omitted.

It follows that for separable metric spaces it makes no difference
whether we investigate the existence of a winning strategy or of a stationary
winning strategy.

Recall that a subset X of a topological space Y is said to be a Souslin
set in Y if there is an indexed family

(F(ky, ..., k): (ky, ..., ke N", neN)
of closed subsets of Y such that
X=U{N{F(ky, ..., k): neN}: (ky, k;,..)eN"}.

LemMmA 1. The follbwing conditions are equivalent:
(@) X is a Souslin set in Y.
(b) There exists a sequence (g,, €5, ...) of countable partitions of X such
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that ¢,,, refines ¢, for each neN, and (E,< X for each sequence

(Ey, E,, ...) with E,,, < E,c¢, for each neN.
For the proof we refer to [12].
THEOREM 3. If X is a Souslin set in Y, then I11S(X, Y).

Proof (cf. [11], Theorem 1.1). By Lemma 1 there exists a sequence
(1, &2, ...) of countable partitions of X such that ¢,,, refines ¢, for each
neN, and E, < X for each sequence (E,, E,, ...) with E,,, < E,e¢, for

each ne N. We define a strategy t for Player II as follows. Let ne N and let
(A4, By, ..., A,) be a sequence of subsets of X such that A, o B, >...> 4,
and |A4,] > N, for each kK < n. Then

A, = {4, nE: Eeg,},
and thus there exists a set E,ec¢, such that |4,nE,| > NX,. We set
t(Al, Bl’ ceey An) = A,,('\E,, = BPI‘

If ne N and (4,, B,, ..., A,) is a sequence of subsets of X such that A, > B,
5...2 A, and |4, < N,, then we set

t(Al, Bl’ ceey An) = Q.
The strategy t, defined in this way, is a winning strategy of Player II because
NB,<NE, < X.

THEOREM 4. Let X be a subset of an uncountable Polish space Y. If 11
18(X, Y), then either X is countable or it contains a copy of the Cantor
discontinuum.

The proof of Theorem 4 is analogical to the proof of Sierpinski’s
theorem (see [10]), so it is omitted.

Remark 1. Moreover, one can easily show the following strengthening
of Theorem 4:

If I11S(X, Y), then for each uncountable subset A, of X the set A, N X
contains a copy of the Cantor discontinuum.

It is sufficient for Player I to choose a set A, = X on the first move.

THEOREM 5. Let Y be a Polish space. If 11S(X, Y), then Y — X contains a
copy of the Cantor discontinuum.

The proof of Theorem 5 is similar to the proof of Theorem 4.

A subset X of an uncountable Polish space Y is said to be a Bernstein
set if neither X nor Y—X contains a copy of the Cantor discontinuum.
Assuming the axiom of choice we infer that each uncountable Polish space
contains a Bernstein set ([5], p. 514). Since Bernstein sets in Polish spaces are
uncountable, from Theorems 4 and 5 we have the following
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~ CoroLLARY 1. If X is a Bernstein set in a Polish space Y, then the game
S(X, Y) is undetermined.

Two subsets X and Z of a topological space Y are said to be Borel
separated if there is a Borel set B in Y such that X < B and Z < Y—B.

LEMMA 2. Let X and Z be subsets of a topological space Y and let
zZ=\2Z,.

If X and Z are not Borel separated, then there is an ne N such that X and Z,
are not Borel separated.

The proof of Lemma 2 is easy, and so omitted.

LEMMA 3. Let Y be a Polish space. If Y— X contains an analytic subset Z
and X contains a subset W, so that Z and W are not Borel separated, then W
contains an uncountable subset D such that each uncountable subset of D is not
Borel separated from' Z.

Proof. Since Z is an analytic set, Y —Z is a coanalytic set and Y—-Z
> W. If W were contained in some countable union of constituents of Y —2Z,
it would be Borel separated from Z. Thus there are uncountably many
ordinals a < 2 such that Z, "W # (3, where Z, are constituents of Y —Z.
We choose a point w, from each set Z, n W such that Z, " W # @, and put

D={w,: a<Q and Z,nW # Q}.

Then D is uncountable, D is contained in W, and each its uncountable subset
E contains points w, with any arbitrarily large ordinals a < . Therefore, E
is not Borel separated from Z (see [5], p. 501).

THEOREM 6. Let Y be a Polish space. If Y — X contains an analytic subset
Z such that Z and X are not Borel separated, then 11S(X, Y).

Proof. Let f be a continuous map from the set of irrational numbers
N¥ onto Z, where Z < Y—X and let

F(jla ""jn) =f(B(jla ’Jll))a

where
B(.il’ ’Jn) = {(il’ iz, "°)€NN: (ils AR in)=(jl’ a.’n)}
Then
U{F(j): jeN} = 4,
U{F(.’l’ "-’jmj): .’EN} =F(.i1a ""jll),
and

diam F (j;, ..., j)) 0 as n—
for each (j,, j,, ...)e N".
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From Lemma 3 it follows that X contains an uncountable subset A4,
such that each its uncountable subset is not Borel separated from Z. We
shall define a strategy s for Player I as follows. Let us put s(Q®)= 4,.
Assume that Player II chooses an uncountable subset B, such that B, < A,.
Since B; and Z are not Borel separated and Z = () {F(j): je N}, from
Lemma 2 it follows that there is j, € N such that B, and F(j,) are not Borel
separated. Since B, is contained in X and F(j,;) is an analytic subset of Y
— X, using Lemma 3 for the sets B; and F(j,) we infer the existence of an
uncountable set A, < B, such that each its uncountable subset is not Borel
separated from F(j,). Let us put s(4,, B,) = A,. Assume that B, — A, is an
uncountable set chosen by Player II. Since B, and F(j,) are not Borel
separated and

F(j)) = U{F(j1,)): jeN},

it follows again from Lemma 2 that there is j, € N such that B, and F (j,, j,)
are not Borel separated. Using once again Lemma 3 for the set B, = X and
the analytic set F(j,,j;) < Y—X, we infer the existence of an uncountable
set Ay < B, such that each its uncountable subset is not Borel separated
from F(j,, j,). Let us put

S(Ala Bl9 AZ, BZ) = A3'

Proceeding by induction, we define the strategy s for Player I and construct
the sequence (j;,Jja,..)€ N¥ such that for each ne N the sets B, and
F(j,, ..., j,) are not Borel separated, so

Ban(jls ---’jn) ¢®‘

Since
nF(jl’ ""jn) = {P} < Z’
where p = f(j;,Jjz, ---), also
pe(B,.
Indeed, let ne N and let U be an open neighbourhood of p. Then there is m
= n such that
F(jla ---ajm) < U

Since F(jy, +--» jm) N Bm # O, we have U N B,, # @ and, because B, > B,,, we
obtain B, U # @. Thus peB,. Finally, because peZ = Y— X, we have

NB,~(Y-X) # Q,
and thus s is a winning strategy of Player I.

2 — Colloquium Mathematicum t. 54, z. 2
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CoRroOLLARY 2. If X is a coanalytic non-Borel subset of a Polish space Y,
then 11S(X, Y).

By Theorem 3 and Corollary 2 we have also

CoroLLARY 3. If X is analytic or coanalytic in a Polish space Y, then the
game S(X, Y) is determined.

QuesTiOoN. Let X belong to the o-algebra generated by analytic subsets
of an uncountable Polish space Y. Is then S(X, Y) determined? (P 1334)

Remark 2. One can easily notice that if I 1S (X, Y), then there is an
uncountable set 4 = X such that each its uncountable subset B is not Borel
separated from Y—X. A question arises when the converse implication is
true (P 1335). Theorem 6 gives only a partial answer to this question.

We shall prove below some properties of set families for which the
players: have winning strategies in the Sierpinski game S(X, Y).

THEOREM 7. The family {X < Y: I11S(X, Y)} is closed under sf-opera-
tion for every topological space Y.

Proof. We should prove that if II1S(X(ky,...,k,), Y) for each
(k45 ..., k))eN", ne N, and

xX=U{N {X(kl, ooy ky): neN}: (ky, kz, ..)eNN,

then I11S(X, Y).
First we define a secondary system

{X“‘""""’: (ky, ..., k)e N", ne N}

in the following way:
X(kl'm't") = U {X(kl)ﬂf'\X(kl, (RS kn)nx(kla ey knsjl)
nX(kl’ sy kmjlajZ)n"': (jlajZ: )ENN}
Then we have
X =y {X*: k,eN),
X (k) o X*° = ) {x**2. k,eN},
X (ky, k) > X**2 = (x**2R peny, L

and so on.

Let s“""*” be a winning strategy of Player II in the game
S(X (ky, ..., k), Y). Without loss of generality, we may assume that X is
uncountable. We shall define a strategy s for Player II in the game S(X, Y)
as follows. Let A; < X be an uncountable set chosen by Player I in S(X, Y).
There is k, € N such that

14, A X" > N,
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Now, in the game S(X (k,), Y) let Player I choose B = %0 (4¢Y) in reply.
We have B{" c A" and |B{!| > N,.

In the game S(X, Y) we set s(4,) =B, —B“‘) Let A, < B, be an
uncountablc set chosen by Player 1. In the game S(X (ky), Y) let Player I
choose Az = A, and let Player II choose

k kq), J(ky) plkq) (ky)
B(zl) “(Al lAl

in reply. We have B3 c 45" and |B5Y| > N,. There is k,e N such that
IBSV A x* 142 5 .
Let Player I in the game S(X (k,, k,), Y) choose
A(kl k2) B(zll) A X(ll-kz)

and let Player II choose
B(kl.kz) — s(kl.kz) (A(lkl-kz))

k kq.k kq.k ‘
in reply. We have BY'*? < 41"*? and |B%1*?) > N,

In the game S(X, Y) we set B, = s(A,, B,, A;) = B{"*?. Let 4, c B,
be an uncountable set chosen by Player I. In the game S (X (ky), Y) let

Player I choose Ag“) = A; and let Player II choose
B(;l) (kl)(A(l'»l) B(kl) A(kl) B("l) A(kl)

in reply. Then B3" < ASY and |B%"] > N,. In the game S(X (ky, k3), Y) let

Player I choose A3'*? = B$Y and let Player II choose
B(z"l-"z) ("1 "2)(A("1 k2) B("l k2) A(z"l-*z))

in reply. We have BY1*? c 4$1*2 anq [gS1+2)| 5 Wo. There is k3 N such
that

(kq.k2) (kqy,kp,k3)
|BR1*D A x*rkekd) o

In the game S(X(k,, k,, k3), Y) let Player I choose
A(lkl,kz.k3) - B(zklukz) nX(kl,kz,k3)
and let Player H choose

B, =S (4; ))
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In the game S(X, Y) we set
B3 = S(Al, Bl~ AZ» BZv AJ) = B(lkl'kZ'kE‘)’ ey

and so on.
In order to prove that the just defined s is a winning strategy for Player
II in S(X, Y), it suffices to show that B, = X. Since
k

X=U{N{X(ky, ..., k): neN}: (ky, ks, ..)e NV},

so if we take the above-constructed sequence (k,, k,, ...)e NV, it is sufficient
to prove that

NB, = N{X (ky, ..., k,): neN}.
k
Let us take any arbitrary ne N. Then

N Bos NBe (B <Xy, ..o k),

because the sets Brl"*" are chosen in the game S(X(ky, ..., k,), Y) by

Player II according to the (winning) strategy s*1""*® Thus for each ne N
we have

and therefore

B.c N X(ky,....,k) = X.
n=1

Remark 3. If F is a closed subset of a topological space Y, then, clearly,
II1S(F, Y). From Theorem 7 it follows that I1 1 S(X, Y) if X is a Souslin set
in Y. Hence Theorem 3 is a consequence of Theorem 7.

By Theorem 7 we get

CoROLLARY 4. For every fixed topological space Y the family {X < Y: 1l
1S(X, Y)} is closed for countable unions and countable intersections.

Remark 4. One can easily check that, in opposition to Corollary 4, for
Y = [0, 1] the family {X < Y: I1S(X, Y)} is neither additive nor multipli-
cative.

Remark 5. It is not difficult to prove that if Zc X cY and Z is a
Borel set in Y, then the games S(X, Y) and S(X—Z, Y) are equivalent. In
particular, if Y is a T;-space and Z is a countable subset of X c Y, then the
games S(X, Y) and S(X—Z, Y) are equivalent.

Further, we shall use the following two lemmas, whose simple proofs
will be omitted.
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LEMMA 4. If X cZ c Y and 111S(X, Y), then I11S(X, Z).

LeMMa S. If X<cZ <Y and 111S(X,Z) and 111S(Z, Y), then 1I
18(X, Y). .

THEOREM 8. Let X be a subset of a complete metric space Y. If 11
1S(X, Y) and Z is an arbitrary space which contains X, then 111S(X, Z).

Proof. Let us consider the completion Z of the space Z. By the
Lavrentieff theorem (see [5], p. 429), the homeomorphism idy: X — X be-
tween subspaces of the spaces Y and Z is extendable to a homeomorphism
h: Y, »Z,, where X c Y, c Y and Y,eG,(Y) as well as X cZ, = Z and
Z,eG4(2). Let us put Z,=2,nZ and Y, =h"'(Z,). Then X<cZ,c2Z
and Z,eG;(2).

Since M1S(X,Y) and X <Y, c Y, from Lemma 4 we infer that II
1S(X, Y3). Since h is a homeomorphism and Z, = h(Y,), it follows that II
1S(X, Z,). From Theorem 3 we infer that II11S(Z,, Z), as Z,eG;(2).
Finally, since I11S(X, Z,) and 111S(Z,, Z), by Lemma 5 we obtain II
18(X, 2).

Remark 6. One can easily notice that if Y is any topological space,
then the games S(X, Y) and S(X, X") are equivalent.

Below we shall give some examples of set families for which the game
S(X, Y) is undetermined.

By Corollary 1 we see that the game S(X, Y) is undetermined if X is a
Bernstein set in a Polish space Y. In order to give an example of another set
for which the Sierpinski game is undetermined, we shall use the Banach-
Mazur game.

Oxtoby [8] considered the following variant of the Banach—Mazur
game. Let Y be any topological space and let G be a family of subsets of the
space Y. It is assumed that this family satisfies the following conditions:
Int G # @ for every set Ge G, and for each non-empty open subset U there
is Ge G such that G < U. Let X be a subset of Y. We define the Banach-
Mazur game BM (X, Y, G) as follows. Players 1 and II choose alternately
subsets U;, Ve G such that U, o V; o U, o V;, o ... Player I wins the play
Uy, 1, Uy, V5, ..) of the game BM(X, Y, G) if

Xn()U,-;éQ);

otherwise Player II wins.
Oxtoby proved the following
THeoReM 9. (a) I1 1 BM (X, Y, G) if and only if X is of first category in Y.
(b) Let Y be a complete metric space. 11 BM(X, Y, G) if and only if Y
— X is of first category at some point of Y.
For the proof of Theorem 9 we refer to [8] (Theorems 1 and 2).
Recall that a subset X of a topological space Y is said to be a Lusin set
if X is uncountable and |X N F| < N, for every nowhere dense set F c Y.
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Let Y be a metric space. A subset X — Y is said to be a Lusin set in
every ball if for each open ball K — Y the set K n X is a Lusin set. We shall
use the following notation. Let A be any set. We put

A° = {xeA: |[U N A] > X, for each open neighbourhood U of x}.

LEMMA 6. If X is a Lusin set in Y and A < X is an arbitrary uncountable
set, then Int A° # Q.

The proof is easy, and thus it is omitted.

THEOREM 10. Let Y be a Polish space. If X < Y is a Lusin set in every
ball, then T [I11S(X, Y)].

Proof. Assume that- Player I has a winning strategy s. Player I chooses
a subset 4, = s(@). Let U =Int AY. By Lemma 6, U is non-empty. To this
set U we introduce a metric d such that the metric space (U, d) is complete
(see [2], p- 342).

We shall show that Player I1 has a winning strategy ¢ in the Banach-
Mazur game BM(X nU, U, G), where G is a family of non-empty regular
open subsets. In the Banach-Mazur game let Player I choose a non-empty
regular open subset U, < U. Without loss of generality we may assume that
diam U, < 1 in the metric d. The set B; = A? " U, < A, is uncountable. If in
the Sierpinski game S(X, Y) Player II chooses a set B,, then, in reply, Player
I will choose s(A,, B;) = A, such that A, < B, and |4,| > N,. Let us put V;
= Int A. Then ¥V, # @. We will show that ¥; c U,. Indeed, we have

V,=IntA} c A3 cB, =U,nA} c U,
and therefore
V,=IntV, cIntU, = U,

because U, is a regular open set. In the Banach-Mazur game we define a
reply of Player II as t(U,) = V;. Let Player I choose a non-empty regular
open subset U, — ¥; such that diam U, < 4. The set B, = ASnU, c A4, is
uncountable. If in the Sierpinski game S(X, Y) Player II chooses a set B,,
then, in reply, Player I will choose

S(Al’ Bla A21 BZ) = A3

such that A; = B, and |A4;] > N,. Let us put ¥, = Int A3. Similarly as above,
we have V, # @ and V, c U,. We define t(U,, V;, U,) = V,.

Assume that in the Sierpinski game S(X, Y) sets A,, B,, ..., A,, B, were
chosen while in -the Banach-Mazur game BM(X U, U, G) sets
U,, i, ..., U, were chosen. Then in.the Sierpinski game Player I chooses

s(Als B]a ceey An’ Bn) = An+la
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so that 4,,; = B, and |A,,,| > N,. Let us put ¥,=Int A2, ,. Then ¥V, # @
and V, < U,. We define

t(Uy, Vi, ..., U) = V..
Then in the Banach-Mazur game Player I chooses a non-empty regular open
subset U,,; < V, such that
1

. <——.
diamU,,, -

In the Sierpinski game Player II chooses B,,, = A%,,nU,,,. In this
manner we have inductively defined the sets A,,,, V,, U,,; and B,,,.

Since s is a winning strategy of Player I in the Sierpinski game S(X, Y)
and diameters of the sets B, converge to zero when n— oo, we have

(D?& nEn= nA—nC Y-X.

We shall show that ¢t is a winning strategy for Player II in the Banach-
Mazur game BM(X n U, U, G). Indeed,

@ #NU0,=NV,= Int(4%)< NA°
cY-

<A, X.
By Theorem 9 (a) we see that X nU is of first category; i.e.,
XnU-= U Fis

where F; for i =1, 2, ... are nowhere dense sets. Since |X n U| > N,, there is
a positive integer k such that |F,| > N,. Then

(X nU)NnF,| > N,.
Since the space Y is separable, we have

U = U K",
i=1

where K, K,, ... is a sequence of open balls contained in U. There is a
positive integer n such that

(XNnK)NF,| >N,.

Since F, is a nowhere dense subset, this contradicts X being a Lusin set in
every ball. |
Thus Player I does not have a winning strategy in the game S(X, Y).

By Theorems 10 and 4 we get
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COROLLARY 5. Let Y be a Polish space. If X < Y is a Lusin set in every
ball, ther} the game S(X, Y) is undetermined.

Consider the case where Y —X is a Lusin set.

THEOREM 11. Let Y be a Polish space and let Y—X be a Lusin set in
every ball. Then the game S(X, Y) is undetermined.

Proof. First, we shall show that X is of second category in Y. Indeed,
assume that

X cyF,,

where F, are closed nowhere dense sets in Y. Then, for any positive integer n,
F,n(Y—-X) is a countable set. Hence F," X = F,—(Y — X) is countable, so
F,nX is a Gs-set in Y. Thus

X =U(F,nX)

is a Gg.-set in Y and Y— X is a Borel set (even F,;) in' Y. Therefore Y — X
contains a copy of the Cantor discontinuum. This contradicts Y — X being a
Lusin set.

- We shall show that 1[II1S(X, Y)]. Assume that Player II has a
winning strategy s. Since X is of second category in Y, we may construct
(assuming CH) a Lusin set 4, in Y which is contained in X (see [S], p. 529).

In the game S(X, Y) let Player I choose a set A,. We shall show that
Player 1 has a winning strategy ¢ in the Banach—-Mazur game BM (X, Y, G),
where G is a family of non-empty regular open sets. Let B, = s(A4,). By

Lemma 6 we have U = Int BY # (. There exists a non-empty regular open
subset U, contained in U. In the Banach-Mazur game we put t(®) = U,.
Let V; c U, be a non-empty regular open subset chosen by Player II.
Without loss of generality we may assume that diamV, < 1. The set A4,
= BY n ¥, B, is uncountable. In the game S(X, Y) Player I chooses 4,. In
this game Player II chooses B, = s(A4,, B,, A,) in reply, so that B, < 4, and
|B,| > N,. Let U, = Int B}. Similarly as in the proof of Theorem 10, we have
U, # @ and U, c V;. We define a reply for Player I in the Banach-Mazur
game as t(U,, V;) = U,. Let Player II choose in this game a non-empty
regular open subset V, cU, such that diamV, <3. The set A,
= B nV, c B, is uncountable. In the game S(X, Y) Player I chooses 4. In
this game Player II chooses

B; = S(Al, B,, AZ’ B,, A3)

in reply, so that By — 45 and |B3| > N,. Let U3 = Intl—i;d. Then U; # @ and
U, < V,. We define

t(Ul, ‘/1, Uz, V2)=U3, ceey
and so on.



GAME OF SIERPINSKI 191

Since s is a winning strategy of Player II in the game S(X, Y), we have
{x}=NB,<=X.

Next, ¢ is a winning strategy for Player I in the game BM (X, Y, G). Indeed,
@ # U, = Nnt(BY) = N B2 =B, = X.

By Theorem 9 (b), the set Y — X is of first category at some point, i..,
there exists an open set W such that Wn(Y—X) is of first category.
Similarly as in the proof of Theorem 10, we obtain a contradiction with the
assumption that Y—X is a Lusin set in every ball

By Theorem 5 we have T1[I11S(X, Y)]. Thus the game S(X, Y) is
undetermined.

Remark 7. Davis [1] considers the following game. Let X be a subset
of the Cantor discontinuum {0, 1}¥. Two players construct a sequence

(x05 X1, X2, ...)€ {0, 1}V
choosing alternately a bit
x,€{0, 1}  (Player I)
and a finite binary sequence
(Xi+1s -5 Xi+)€ {0, 1}*  (Player II).

Player I wins if (xo, X, X5, ...)€ X ; otherwise Player II wins. In paper [7] of
Mycielski this game is denoted by G%(X) and the following sentence is called
the axiom P: “every uncountable set X < {0, 1}V contains a copy of the
Cantor discontinuum” (of course, axiom P is inconsistent with the axiom of
choice). Axiom P is equivalent to the game G% (X) being determined for each
X < {0, 1}

Notice that axiom P is equivalent to the statement that for each subset
X = {0, 1}V the Sierpinski game S(X, {0, 1}¥) is determined, besides we
always have I11S(X, {0, 1}"). '

I would like to express my deep gratitude to. Professor Rastislav

Telgarsky, who introduced me to the problem and who made several
valuable suggestions which were of great help during my study on this issue.
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