COLLOQUIUM MATHEMATICUM

VYOL. LVI 1988 FASC. 2

STRICT-2-ASSOCIATEDNESS FOR THIN SETS

BY

KATHRYN E. HARE (EDMONTON)

1. Introduction. Let G denote a compact abelian group and G =TI its
necessarily discrete, abelian, dual group. When E is a subset of I, an
integrable function f on G will be called an E-function provided its Fourier
transform f vanishes on the complement of E. Similarly, an E-function f will
be called an E-polynomial if the support of its Fourier transform, denoted by
supp f, is finite.

A subset E of I' is said to be a A(p) set, p >0, if for some 0 <r <p
there is a constant c(p, r, E) such that

Ifll, < c(p, r, E)ISl,

for all E-polynomials f.
For standard results on A(p) sets see [11] and [8].

DeriniTiON ([8], 9.3). E =T is said to be strictly-2-associated with a
measurable subset S of G if there is a constant ¢ = ¢(S, E) > 0 such that

s fII3 = cllflI3

for all E-polynomials f.

Any such c will be called a constant of strict-2-associatedness for E and S.

In [9] Miheev proves that any A(p) set in Z, with p > 2, is strictly-2-
associated with all subsets of the circle of positive measure. This improves
upon Zygmund’s result ([14], V.6) for lacunary series in Z.

We extend Miheev’s result to a formally larger class of subsets of Z and
obtain the same conclusion for certain A(p) sets in arbitrary discrete abelian
groups. In the process we develop a new arithmetic property of A(p) sets.

Following Blei [1], call E a uniformizable A(2) set if for each ¢ > 0 there
exists a constant c(E, &) such that for all vel?(E) there is a continuous
function g satisfying

(l) "g”w s C(E, 8)”0"2;
(i) g(x) = v(y) for all y€E;
(1) |Iglrell2 < elloll2-
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The smallest such constant c(E, ¢) will be referred to as the unformizable A(2)
constant for E and e.

All uniformizable A (2) sets are A(2) sets, and all A (p) sets with p > 2 are
uniformizable A4(2) sets [1].

In Section 2 we will prove

THEOREM A. If E is a uniformizable A(2) subset of Z, then E is strictly-2-
associated with each subset S of the circle group T having positive Lebesgue
measure.

Although we follow the basic outline used in [9], we present new proofs
of the intermedjate steps. Our proofs of these steps are simpler and they can
be generalized to groups other than Z and T.

The arithmetic structure of A(2) sets plays an important role in the
proof. '

As an application of Theorem A we mention two corollaries. The proof
of the first is immediate from Theorem A.

CoroLLARY 1. If E is a uniformizable A(2) subset of Z, then the only E-
function in L*(T) which may vanish on any subset of T of positive measure is
the identically zero function.

CoROLLARY 2. Suppose E is a uniformizable A(2) subset of Z and {a,}= ,
is a sequence of complex numbers such that

f=Yae"

neE

converges pointwise on some subset of T of positive measure. Then f € L*(T),
ie.,

Y la,)? < 0.

neE
\

Proof. Let Sy be the N-th partial sum of f By an application of
Egoroff's theorem we may conclude that {Sy}¥., converges uniformly on
some set S of positive measure. Thus

s‘;P Il1sSnll2 < .

Since E and S are strictly-2-associated and Sy is an E-polynomial, sup||Syll»
N

< o0, and thus f eL?(T).

If G is not a connected group, then one can construct polynomials
which vanish on certain subsets of G having positive measure; thus in the
general setting a further hypothesis is required to obtain the conclusion of
Theorem A

This hypothesis is related to the following definition given in [8], 8.2:
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E c T is said to be X,-subtransversal for a subset X, of I' if, whenever x
and y are distinct elements of E, then yy~'¢ X,.

With this terminology we can state the general theorem, whose proof is
the content of Section 3.

THEOREM B. Let G be a compact abelian group and let E, a subset of T,
be a uniformizable A(2) set which is X ,-subtransversal for all finite subgroups
Xo of I. Then E is strictly-2-associated with all subsets of G having positive
Haar measure.

In proving this we are led to consider a new arithmetic property of A (2)
sets in discrete abelian groups other than Z.

Of course, similar corollaries to those given above follow from Theorem
B for uniformizable A(2) sets which are X,-subtransversal for all finite
subgroups of I.

As Z contains no finite subgroups other than the trivial one, the
subtransversality condition in Theorem B is automatically satisfied. Thus
Theorem B reduces to Theorem A when I' = Z. Indeed, whenever G is a
connected group, there are no non-trivial finite subgroups in I

If there are distinct characters y and ¥ in E with y ! an element of a
finite subgroup X, then the E-polynomial y —y vanishes on the annihilator
of Xy, an open set since X, is finite, and hence a subset of G with positive
measure. Obviously, E fails to be strictly-2-associated with this set, so the
subtransversality condition is necessary.

A set E is said to tend to infinity if for each finite set 4 = I" there is a
finite set . F < E such that if y and y are distinct elements of E\F, then
x¥ ~'¢A. For subsets of Z this means that, for each positive integer N, only
finitely many points of E differ in absolute value by at most N.

It is known ([8], Ch. 9) that the conclusion of Theorem B holds for A (4)
sets tending to infinity and satisfying the subtransversality condition. As
there are many known examples of A(4) sets not tending to infinity, our
work improves upon this result. The presentation given in [8] is a synthesis
of the work of Bonami [2] and Lépez [7].

2. Strict-2-associatedness in Z. Throughout this section, E will denote a
uniformizable 4(2) set in Z and S will denote a subset of the circle T with
positive Lebesgue measure. )

Roughly, the idea of the proof of Theorem A is to show first that
whenever subsets of a uniformizable A (2) set are all strictly-2-associated with
S with a common constant of strict-2-associatedness, and the subsets have
sufficiently large gaps between them, then their union is again strictly-2-
associated with S; and then to show that any uniformizable A4(2) set is the
union of such a collection of subsets. This outline, which will also be
. followed in the proof of Theorem B, is the general scheme used in [9].
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The first step is precisely the statement of Lemma 2.1.

For sets F, and F, in Z let d(F,, F,) = min {|n, —n,|: n,eF,}.

LEMMA 2.1. Given ¢ > 0 there is an integer N = N(E, S, c¢) such that if
the subsets \E;);.; of E are such that for all i€l

s f1I3 = cllf1i3

whenever f is an E;-polynomial, and

d(E, E)> N

for all i #j, then \J E; is also strictly-2-associated with §.
iel
Before proceeding to the proof we make two remarks.
Remarks. 1. This lemma replaces Theorem 5 of [9] whose proof does

not seem to adapt easily to uniformizable A(2) sets or to the general setting.

2. The proof of Lemma 2.1 makes use of a property of uniformizable
A(2) sets discussed in [4], namely that there is a Young function &(x)
= ¢(x?) with ¢ a “strongly convex” function, and a constant K such that

A3 < KIAI3

whenever f is an E-polynomial. Without loss of generality, assume ¢ is itself
a Young function, and thus has a conjugate . Set B(x) = ¢ (x3). It follows
that for all measurable functions f and g

Ifall2 < /211 flleliglls-

We will be using this notation in the proof below.

Proof of Lemma 21. Let ¢ =¢/24K and choose a trigonometric
polynomial P satisfying ||P—14||7 <e.

Let N = N(E, S, ¢) = max !|[n—m|: n, mesupp P}.

Let |E;);.; be subsets of E which satisfy the hypothesis of the lemma
with this choice of N. We estimate ||15 f]|3 for any () E;-polynomial. Write f

iel
as ) f; with f; an E;-polynomial for each iel. Observe that if, for some
iel ’

melZ,
fiPm#0 and f,P(m#0,
then
d(supp f;, suppf) < N.
But, clearly,
d(E;, E)) < d(supp f,, supp f)),
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so we must have i =j. Thus
ILfPI3 =2 £ PlI3.
iel
Since the sets \|E;);,, are disjoint and strictly-2-associated with
S, with constant of strict-2-associatedness ¢, we have

cllflif =X cllfillz < X IIf 153

iel iel

Hence

cllfIF <2 (I(s—P) £lIZ +IIPAIIZ)

iel

<23 25— Pl IAIZ+21IPAIE < 2% 211 £ll3+ 211 PAII3,

iel iel

with the last inequality following from the choice of P.
Now the functions f; are E-polynomials, so after using the property of
uniformizable A(2) sets described in Remark 2, and simplifying, we see that

cllfllZ < 4eKfI3+211Pf113.

Similarly,

IPAII3 < 2)l(1s— P) FlI3+2|I1s 13 < 4eK || f1I3 + 21115 I3
Thus

cllfll} < 12K f113+41115 113
Our choice of ¢ implies

. c
15 12 > §Ilf||§

for all () E;-polynomials f.
iel

Establishing the ideas of the second step will require several lemmas. We
first assert that if E is strictly-2-associated with S, then so are the sets E U |n),
neZ, with constant of strict-2-associatedness independent of n. Without the
last requirement this can essentially be found in [8], 9.8, and is due to
Bonami. Our result will be used to show that the subsets referred to in the
outline of the proof do indeed have a common constant of strict-2-
associatedness for the given set S.

LEMMA 2.2. Suppose that E is strictly-2-associated with S. Then E U {n}
is also strictly-2-associated with S, with constant of strict-2-associatedness
independent of n. Indeed, if c is a constant of strict-2-associatedness for E and
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S, then EU {n} and S have as a constant of strict-2-associatedness

ce ~Leem(S)
(2m(V>+'”(s’+2) am()’

where V is an open subset of the circle which depends only on E, c and S, and ¢
is a constant determined by V.

The proof is postponed until the end of this section.

Remark. In [9], Theorem 6, Miheev proves a similar result, without
obtaining a specific constant of strict-2-associatedness. Our proof, though
shorter, is still lengthy. For this reason we have postponed its presentation.

A consequence of Lemmas 2.1 and 2.2 is

CoroLLARY 2.3. If E, in addition to being uniformizable A(2), tends to
infinity, then E is strictly-2-associated with all subsets of the circle with positive
measure.

Proof. For a given set S choose the integer N = N(E, S, m(S)) from
Lemma 2.1. Since E is assumed to tend to infinity, except for a finite set of
integers, say F, distinct members of E differ by at least N.

Now apply Lemma 2.1 taking as the sets E; the singleton sets whose
union is E\ F. Each of these sets is strictly-2-associated with S, with constant
of strict-2-associatedness equal to m(S), and hence the choice of F ensures
that E\F is strictly-2-associated with S. Applying Lemma 2.2 finitely many
times, we conclude that E is strictly-2-associated with §.

We now examine the arithmetic structure of A(p) sets and observe first
that uniformizable A(2) sets have “uniformly large gaps”.

LEMMA 24. If c(E, ¢) is the uniformizable A(2) constant of E and &, then
|la+b, a+2b, ..., a+ Nb} NE| < 8(c(E, ¢)*+¢*N)

for any a, beZ and positive integer N (|-| denotes cardinality).
Proof. This is a straightforward modification of [11], 1.3.5.

CoroLLARY 2.5. Given any positive integer N there is an integer M
= M(E, N) such that any interval of length M contains a subinterval of length
N free of points of E.

Proof. If c(E, ¢) is the uniformizable A (2) constant for E and ¢, then
we may take

M(E, N) =c(E, ¢)> 16N
with ¢ = (16N)~1/2, By the lemma, the interval (a, a+ M] must contain a
subinterval of length

M
8(c(E, e)*+¢* M)

free of points of E.
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The uniform gap property enables us to show that if a uniformizable
A(2) set with large enough gaps between members is adjoined to a uniformiz-
able A(2) set which is strictly-2-associated with some subset S of the circle
with positive measure, then the larger set is also strictly-2-associated with §.

LemMmAa 2.6. If E' c E is strictly-2-associated with S, then there is an
integer M = M(E, E', S) such that if E" = \n,} c E satisfies |n,—n;l = M for
all j # k, then E'UE" is also strictly-2-associated with S.

Proof By Lemma 2.2 the sets E' U {n} are strictly-2-associated with S,
with some constant of strict-2-associatedness ¢ > 0 independent of n. Choose
the integer N = N(E, S, ¢) as in Lemma 2.1 so that if the sets E; c E, i €l,
are strictly-2-associated with S with constant ¢ and d(E;, E;) > N for i # j,
then | E; is also strictly-2-associated with S. Finally, choose M = M(E, N)

iel
as in the previous corollary.

Since |n,—ny| = M for all j # k, there is an interval of length at least N
free of points of E between each pair {n;, n,}. Thus E’UE” naturally
partitions into sets (E;}, with d(E;, E) > N for i#j, and each set E;
containing at most one integer from E”. By Lemma 2.2 these subsets of E are
each strictly-2-associated with S with constant c¢; thus by Lemma 2.1 their
union E'U E” is also strictly-2-associated with S.

A further arithmetic property is necessary to complete the proof of
Theorem A.

DEFINITION. A subset P of Z is called a parallelepiped of dimension N if
P is the sum of N two-element sets and P has 2V elements.

In [9] and [10] Miheev proves that A(p) sets in Z for p >0 do not
contain parallelepipeds of arbitrarily large dimension. (He refers to these as
reflexive segments.) Independently, Fournier and Pigno in [5] obtain the
same conclusion for p> 1. For the case of uniformizable A(2) sets their
proof is straightforward. ,

The notion of parallelepiped can be generalized in the obvious way to
discrete abelian groups. With the appropriate change in wording Fournier
and Pigno’s proof gives the same conclusion for A (1) sets in the general
setting. Miheev’s proofs can only be adapted to the connected case. An easy
proof, using the notion of probabilistic independence, shows that in discrete
abelian groups, all of whose elements have order 2, no A(p) sets, for any
p > 0, can contain parallelepipeds of arbitrarily large dimension. By arguing
that it is always possible to essentially reduce to one of these two cases, we
have been able to obtain the same result for all discrete abelian groups [6].

Following [9] define sets of class M, inductively as follows:

M, is the class of subsets of Z which tend to infinity.

M, is the class of those subsets of Z which for each integer N are the
union of two sets, one consisting of integers which are at least N units apart
in absolute value, and the other a finite union of sets in class M,_,.
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In [9] Miheev shows that each class M, contains a A (4) set which is not
a finite union of sets in class M,_,. He also shows that any sequence of
integers which does not contain any parallelepipeds of dimension n, n > 2,
belongs to class M,_,. In particular, any A(p) set belongs to some class M,.

Thus, any uniformizable 4(2) set is the union of a set with large gaps
between members and a union of a finite number of sets in some class M, _,.
An induction argument, together with Lemma 2.6, will now complete the
proof of Theorem A.

Proof of Theorem A. It suffices to show that any subset of E
belonging to M, is strictly-2-associated with S for each n > 0. A€tually, more
than this will be proved. We proceed inductively on n.

Let E' be any subset of E which is strictly-2-associated with S, and
suppose E” < E belongs to class M,, ie., E” tends to infinity. Let M
= M(E, E', S) as in Lemma 2.6. Since E” tends to infinity, only finitely many
points of E”, say those in the set F, differ in absolute value by less than M.
Hence E' U (E"”\F) is strictly-2-associated with S. By Lemma 2.2, E'UE" is
strictly-2-associated with S.

Now suppose we have established that whenever E' c E is strictly-2-
associated with S and E, — E belongs to class M,, then E'UE, is also
strictly-2-associated with S.

Let E' c E be any set strictly-2-associated with S and assume that
E,,, c E belongs to class M,,,. Again choose M =M(E, E', S) as in
Lemma 2.6. Since E;,; belongs to class M, . ,, it is the union of two sets E,
and E,, where any two distinct integers in E, differ by at least M, and E, is
a finite union of sets in class M,, say

N
E2=UF,', FiEMn.
i=1

Because the gaps in E, are sufficiently large, Lemma 2.6 implies that E' U E,
is strictly-2-associated with S, and by the induction hypothesis so is
(E'VE,)UF,. By applying the induction hypothesis N—1 more times, we
see that

N
E'VE,u(U F)=EVUE,,,
i=1

is strictly-2-associated with S. This completes the induction step, and hence
the proof.

The converse question remains open: If E is strictly-2-associated with all
subsets of T of positive measure, then is E a uniformizable A (2) set? (P 1361)
This would have an affirmative answer if it could be shown that all A (2) sets
are actually uniformizable A4 (2), since it is known that a subset of Z is A (2) if
and only if it is strictly-2-associated with all subsets of T of sufficiently large
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measure [3]. Indeed, the same comments apply if T is replaced by any
compact abelian group G and Z by its dual.

To prove Lemma 2.2 we need the following result:

LEMMA 2.7. Let g be a real-valued, non-negative, integrable function
which is not identically zero. Then there is an £(g) > O such that if n # k, then

| g(x)1e"™—e*2dm > 2(g).

Here m is normalized Lebesgue measure on the circle.

Remark. More generally, it is known [13] that if N is any positive
integer, then there is an £(g, N) such that if fis a trigonometric polynomial
with N non-zero Fourier coefficients, then

(glflzdm elg, N)IISII3.

In Lemma 3.5 we present a more general version of Lemma 2.7 and
provide a proof.

Proof of Lemma 2.2. Since E is a uniformizable A (2) set, we can find
0 > 0 so that whenever m(A) <6

c
IS < 50013

This is a basic property of umformlzable A(2) sets, established in [4].
The function

vm(S)—1sx1_g5(v) = m(S\(S—v))
is continuous, so there is a neighbourhood V of 0 on the circle with
m(S\(S—v)) <o

whenever-veV. Hence if S, =(S—v)nS and f is an E-polynomial, then

c
(1) s, 113 = lits SI3 = s, S113 = Ellfllﬁ

whenever veV.
Given any (E u {n})-polynomial f and veV, let

Lo(x) = f(x+v)—€™f(x).
Observe that
@ fo(k) = f () (€* —e™)
so that f, is an E-polynomial.
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Now the choice of S, ensures that

L e+ (P
513> - | LR

VS,

dm(x)dm(v),

so that by applying the basic inequality
2(jal* +|bl%) > la+b|?
to the line above and then using (1) and (2) we obtain
: .

s f113 = 4m(V),, (x)|* dm(x) dm(v)
4m(V) I3 dm c)
— _1_ - 2 ikv n
) 2g"lf(k)l [1y "~ ™| dm(v).
From Lemma 2.7 we see that
2 s hd 2
A3) s fllz = (V) 2k;lf(k)l 2(1y).
The basic inequality used before also shows that
4) s f113 = flf (n) €™ dm(x)— !IkZ 1 (k) e dm(x)
If(n)IZM(S)— Y 1 (k)%
k#n
Thus by considering the two cases:
(1) 11 = T3
k#n
or
(ii) Y 1 f 1 <zllfl3
k#n
for -

-1
T =m(S) (g;‘(l;)) +m(S)+2)

and substituting into (3) or (4), respectively, we obtain the conclusion of the
lemma with ¢ = ¢(1,).

3. Strict-2-associatedness in the general setting. We turn now to the
proof of Theorem B. The main difficulty in adapting Theorem A is to
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establish an appropriate interpretation of the notion of “uniformly large
gaps”.
In the remainder of the paper we will be using multiplicative notation.
DerFINITION. Let F be a finite subset of I'. For x, Y €I" we say that y is
F-equivalent to ¢ if for some positive integer m there is a sequence

X=X1> X2 cos Xm =V

with y,,x 1 €F for i=1, ..., m—1. Such a sequence is called an F-chain
joining x to V.

If yeEcTI fori=1,...,m then yx,, ..., xn is said to be an F-chain in
E joining x to ¥ and in this case y is said to be (E, F)-equivalent to .

When F is a symmetric subset of I' containing the identity 1, this
relation is an equivalence relation.

This terminology is suggested by [8], 8.9.

The notion of “uniformly large gaps” will be replaced by

THEOREM 3.1. Suppose E — I' does not contain parallelepipeds of dimen-
sion n, and F is a finite symmetric subset of I' containing 1. Then there is a
constant s = s(n, F) such that whenever \y;} c E satisfies y; xj ' ¢ F* for i # j,
then y; and x; belong to distinct (E, F)-equivalence classes if i # j.

Before proceeding with the proof we make some remarks and establish a
lemma.

Remarks. 1. As we are now using multiplicative notation, a parallelepi-

ped of dimension N is a set of cardinality 2" which is the product of N two-
element sets.

2. Taking I' = Z and F =[— N, N], this theorem implies that if n and
m belong to E and |n—m| = sN, then between n and m there is an interval of
length N free of points of E. Thus this theorem is a generalization of the
uniform gap property for Z as outlined in Corollary 2.5.

The proof of the next lemma is motivated in part by [12].

LEMMA 3.2. Let F be any finite subset of I'. For each positive integer n
there is a constant k = k(n, F) such that zf 4 x, =1 is an F-chain joining y, and
Xe> With x; # x; if i #j, and r >k, then |y)i_, contains a parallelepiped of
dimension n.

Proof. k(1, F) = 2 works since any 2-element set is a parallelepiped of
dimension one.

Now proceed inductively assuming the result for n. We consider the F-
chain of distinct terms ly;)f_, with r = 2k(n)|F[*™~! = k(n+1). (We write
k(n) and k(n+1) instead of k(n, F) and k(n+1, F) for ease of notation.)

Notice that each of the sets

1 k(n) Y 2k(n — o, 1 Nk(n)
B, = lXu: =1, B, = nXm k()n)+l’ ...y By = i ji= (N~ 1)k(m)+ 1>

12 — Colloquium Mathematicum 56.2
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where N = k(n+ 1)/k(n), forms an F-chain of k(n) distinct terms; so by the
induction hypothesis each contains a parallelepiped of dimension n.
Observe that any two subsets of I', say 4 = {a;!™, and B = {;}-,, are
translates of one another, i, A = By for some yerl, if o, 07! = ;.. B}
foralli=1,..., m—1. If in addition A "B = @ and A contains the parallel-
epiped P,...Py of dimension N, then A UB contains P,...Pyi1, !, a
parallelepiped of dimension N+1.
| Since the set {x;}i-,; is an F-chain, there are only |F| choices for each of
the characters y;,, x~!. Thus there can be at most |[F|*™~! different sets of
the form

e i WS e+t J=1,..., N.

(Here we count different orderings as different sets.) But N was chosen to be
twice this number, so at least two of the sets B,, ..., By must be translates.
Their union, and hence |x;!7-,, must contain a parallelepiped of dimension
n+1. This completes the induction step.

We now prove Theorem 3.1. Recall that by assumption E does not
contain parallelepipeds of dimension n.

Proof of Theorem 3.1. We will show that if y; ;' ¢ F* for all i #j
with s = k(n, F), then x; and x; belong to distinct (E, F)-equivalence classes
when i #j.

Suppose not. Then there is an F-chain in E, say y,, ..., ¥,,, joining
some pair x;, x;. If two of the characters, Y, and y,, were identical, then the
sequence Yy, ..., ¥x, ¥i+15 ..., ¥m» upon renumbering, would still be an F-
chain joining y; and x;, so we may assume V,, ..., ¥, -, are distinct.

Because ;. ¥, '€F for i=1,...,m—1, it follows that y;eF™ 'y,
and since F™" ! c F* if m—1 <s, we must have m > s = k(n, F).

Thus the F-chain ;! , in E consists of at least k(n, F) distinct terms,
and hence by the lemma must contain a parallelepiped of dimension n. This
contradiction establishes the theorem.

The remaining steps in the proof of Theorem B are similar to those of
Theorem A. We will state the necessary lemmas in complete generality and
briefly indicate how their proofs differ from those of Theorem A.

Throughout, E will be assumed to be a uniformizable A(2) subset of I,
and S a subset of G with positive Haar measure.

By making the appropriate changes in the wording of the proof of
Lemma 2.1 we obtain

LEMMA 3.3. Given ¢ > 0 there is a finite symmetric set F = F(E, S, ¢),
containing 1, so that if the subsets |E;};.; of E are such that for all i€l

s f13 = cllfI3
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whenever f is an E;-polynomial, and
E'Ej—lﬁF=® fori¢j9

then \) E; is also strictly-2-associated with S.

iel

Instead of Lemma 2.2 we have

LemMmA 3.4. Suppose E is strictly-2-associated with S. There is a finite
subgroup X of I' depending on E and S such that whenever the set E L {yx},
x €, is X-subtransversal, then E U !y} is strictly-2-associated with S, with
constant of strict-2-associatedness independent of .

Again a constant of strict-2-associatedness can be specified.

Instead of using Lemma 2.7 in the proof of this lemma we need the
following generalization:

LEmMMmA 35. Let g be a real-valued, non-negative, integrable function

which is not identically zero. There are a finite subgroup X, of I' and a
constant €(g) > 0 such that if y, y €I’ and yy~'¢ X,, then

fglx—vI* = 2(9).
G

Remark. As with Lemma 2.7 this is a special case of a result applying
to all polynomials P with supp P X,-subtransversal ([8], 8.14). We present
here a proof of the special case above for completeness.

Proof. Choose 4 = G of positive measure and 6 >0 so that g > é
on A.

Observe that whenever y, Y €T, Re 1, (x¢ ') < m(A) with equality if and
only if ¢ ! =1 on A, and hence on the smallest open subgroup containing
A. Let X, be the annihilator of this subgroup.

If G is connected, the only open subgroup of G is G itself, and thus X,
would be trivial. In general, X, is a finite subgroup of I and Re 1, (xy )
= m(A) if and only if y¥ "' € X,. An application of the Riemann—Lebesgue
Lemma yields an ¢ > 0 so that

Rel, (¢ ') <(1—-¢e)m(4) whenever ¥~ ' ¢ X,.

Thus, if ¢ ~'¢ X,, we have
[glx—w1* =6 [1,x—wI|* = 6(2m(A)—2Re 1, (x¥ ")) = 2e5m(A).

Setting £(g) = eédm(A), the lemma is established.

The proof of Lemma 3.4 is carried out in the same manner as that of
Lemma 2.2, taking for X the annihilator of the smallest open subgroup
containing ¥, where V is chosen in the same way as in Lemma 2.2.

Finally, we replace Lemma 2.6 by
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LemMA 3.6. Suppose E is X ,-subtransversal for all finite subgroups X, of
I' and suppose E' < E is strictly-2-associated with S. Then there is a finite set
F, depending on E, E' and S, so that whenever E" = y;} — E satisfies y; x; ' ¢ Fy if
i #j, then E'UE" is also strictly-2-associated with S.

Proof. Let ¢ >0 be a constant of strict-2-associatedness for all of the
sets E'U {x!, x €E, and then choose the finite set F = F(E, S, ¢) as outlined
in Lemma 3.3.

Now use the generalization of the notion of “uniformly large gaps”.
Since E is a uniformizable A4(2) set, it does not contain parallelepipeds of
arbitrarily large dimension, and thus Theorem 3.1 may be applied. Choose
the constant s so that if y; x; ' ¢ F* for i # j, and E” = {y;};.,, then the (E, F)-
equivalence class containing x; does not contain any other y; eE”. Denote by
E; the elements of this class which belong to E'u E”. Set

E,=FE UE"\{J E,.
iel
We take for F, the finite set F*.

The proof is concluded as before by applying Lemma 3.3 since the sets
\Ei}icroiy  are  strictly-2-associated with S, with constant of strict 2-
associatedness c, and by construction of the equivalence relation, E;E; ' N F
=@ for all i #j, i, jelu 0.

The definition of the classes M, is easily transferred to the general
setting by replacing “integer N” with “finite set 4”. Thus a set belongs to
class M, if it tends to infinity as defined in Section 1, and a set belongs to
class M, if, for each finite set 4, the original set can be expressed as the
union of finitely many sets belonging to class M,_, and a set ly] with
xix; ¢4 for i+#j.

The proof given in [9] can be reworded to show that any set not
containing parallelepipeds of dimension n belongs to class M,_,. Thus again
each A(p) set, p > 0, belongs to some class M,.

The proof of Theorem B now follows with the same induction argument
as Theorem A, replacing Lemmas 2.2 and 2.6 by Lemmas 34 and 3.6,
respectively.

In conclusion, the author thanks J. Fournier for directing this work.
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