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1. Introduction. In this paper we use terminology and notation of [5].
The concept of a weak isomorphism was introduced by A. Goetz and
E. Marczewski (see [3]). In particular, we define a weak automorphism
of an algebra A = (A4; F) as a bijection 7: A — A such that the mapping
f—f" defined by the equality

(1) @y ey @) = T(f("_l CATR 2 (wn)))
is, for each » =1,2,..., a bijection from the set A™(A) of all n-ary
algebraic operations of the algebra % onto itself. By Aut (%) and Aut* ()
we denote the sets of all automorphisms of U and all weak automorphisms
of A, respectively.

Let a1, ..., a, be arbitrary (but fixed) elements of A and let 7« Aut*(2).
It is easy to see that if for every «,, ..., z,eA4 holds the equality

J@yy ooy Ty Qppyy oeey @) = G(Xyy enny Ty Oy gy oo @)
then for every z,, ..., 2;,¢A holds also the equality
f*(wl’ ooy Xpey T(gpr)y ovey T(‘an)) = g*(mn ooy Tpgy T(Wpgn)y - ony T(an))-

Furthermore, if fe A™, ¢g,,...,g,¢ A® and h =f(g,,...,g,), then
R =g,y 80) (n,k=0,1,...).

It follows that, in particular, a weak automorphism (weak isomor-
phism) image of an algebra belonging to a certain equational class of
algebras is again an algebra belonging to the same class.

Note also (for the sake of the proof of Theorem 3) that if = is a weak
automorphism of an algebra A = (4; F), then 7 is an isomorphism of U
onto algebra A* = (A4; F*), where F* is the class of all operations induced
by F according to formula (1). And, conversely, for any two given
isomorphic algebras 9 and A* with the same fundamental set A and such
that F* < A(%), if ¢: A > A yields an isomorphism between U and
A*, then ¢ is a weak automorphism of the algebra .

Corollaries 2 and 3 from Theorem 3 are based upon remark that
for every algebra U the group Aut () is a normal subgroup of the group
Aut* () (see [2]).
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Weak automorphisms of various algebras were investigated by several
authors (see [3]). Recently J. Dudek investigated weak automorphisms
of linear spaces and of certain related algebras (see [2]). In the present
paper we shall describe (see section 3) weak automorphisms of integral
domains which are either infinite or have 2,3 or 4 elements by treating
them as abstract algebras with the only fundamental constant 0 or with
the two fundamental constants 0 and e (unity) — Theorem 3 and Corollary 1.
Moreover, we shall also give a description of weak automorphisms of finite
simple integral domains (Theorem 2), whence it will follow that Theorem
3 cannot be extended to cover all finite integral domains. Section 2 con-
tains one simple theorem concerning rings with the unity. I owe the prob-
lem to J. Dudek whom I want also to thank for numerous discusions
which greatly influenced the paper.

Considerations of the present paper are in some fragments similar
to those of L. A. Hinrichs, I. Niven and C. J. van den Eynden concerning
fields (see [4]). However, since these authors did not use the concept
of a weak automorphism, often did apply division, and the present paper
deals with the smaller set of algebraic operations — arguments used
below are essentially different from [4].

2. Weak automorphisms of rings with unity. The ring R = (R;+,—,0,)
with the unity e+ 0 can be considered as an abstract algebra in two ways:
for the set of fundamental operations we can take either two operations
of two variables, namely addition + and multiplication -, and one unary
operation of inverse element —x (zero can be regarded here as algebraic
operation 0(x) = x+ (—x) = 0 (reR)) or these three operations together
with the constant operation f(x) = e (which in the first conception is
not algebraic), thus obtaining the abstract algebra R, = (R; +,—, 0, -, €).

In the first case, polynomials of arbitrary many variables with in-
tegral coefficients and without a free summand are algebraic operations.
Besides, two different polynomials can correspond to one algebraic opera-
tion (e.g., a finite ring). In R, all polynomials with integral coefficients
(we treate free summand as a multiple of unity e) are algebraic
operations.

By R, we shall denote the subring of R generated by e.

The following theorem is analogous to Theorem 2.1 in [2]:

THEOREM 1. Let R = (R; +, —,0,-) be a ring with unity e and
le¢t R, =(R; +, —,0,-,¢) be an algebra obtained from R by adjoining
the constant e to fundamental operations. Then a mapping ¢: R > R is
a weak automorphism of the algebra R, if and only if for every x<R there is

(2) p(2) = v(v)+a,
where TeAut* (R), ack,.
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Proof. First we show that if 7e Aut* (%), then the mapping ¢ defined
by (2) is a weak automorphism of the algebra R,. Taking use of group
operation -+, it is easy to verify that ¢ is a bijection. It remains to show
that ¢ induces a one-to-one mapping of A™(R,) onto itself. For this
purpose it suffices to verify that for every algebraic operation fe A™(R,)
the operation induced by ¢ is an algebraic operation of the algebra R,.
Any n-ary algebraic operation ¢ in R, is a polynomial of n variables with
integral coefficients. It has the form

g(ml7 7wn) =f(w17 ---7a7n)+b’

where fe A™(R) is a polynomial with integral coefficients, without a free
summand, and beR, (R, is a ring generated by e¢). Hence we have

3)  elgle @), ..er 9 @) = #(frT @ —a), ...y T (@, —a))) 4B

Since fe A™(R), there is f*¢ A™(R) and so operation (3) induced
by ¢ is algebraic.in R,.
Now let gpeAut*(R,). Let us define a mapping 7: R - R by

(4) 7(®) = ¢(x)—¢(0).

Obviously, ¢(0)eR,. We shall show that 7 is a weak automorphism
of the algebra R. Similarly as before, it is sufficient to verify that for
every fe A™(R) the operation f* induced by 7 is an algebraic operation
in R. Since f* is a polynomial with integral coefficients, it remains to
show that f*(0) = 0. From the definition (4) of = we have

1'(f(1:_1(a','1), ceey T—l(mn))
= o(fle ™ @+ 9(0)); -, 97 (@a+ 9(0)))) — 9 (0).

Hence
7(f(z72(0), ..., 771(0)) = @(£(0, ..., 0))—@(0) = ¢(0)—¢(0) =0,

which completes the proof of Theorem 1.
Taking a = 0 in Theorem we have

COROLLARY. Every weak automorphism of R is simultaneously a weak
automorphism of R,.

3. Weak automorphisms of integral domains. In the sequel R =
(R; +, —,0,-) will be an integral domain, i.e. an associative-commu-
tative ring without divisors of zero, with the unity e, and containing at
least 2 elements. As is well known, if integral domain R has a finite
number ¢ of elements, then it is a field, and so g = p™, where p is
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a prime and m is a certain positive integral (the number p is a rank of
the additive group and it is called characteristic of the integral domain or
of the field, resp.). Thus all integral domains with the fixed finite
number q of elements are isomorphic and their multiplicative group is
a cyclic group of rank ¢— 1. Hence in integral domain R with the finite
number ¢q of elements equality 2? = x holds for every zeR.

If integral domain R has infinitely many elements, then the set
of algebraic operations of the algebra R, (or of the algebra R) will be
isomorphic to the set of polynomials over the ring E, generated by unity
e with (or without) the free summand and so it is isomorphic to the set
of polynomials with either integral coefficients if the characteristic of
the ring is ¢, or with the coefficients in Z, (the ring of integral numbers
modulo p) if the characteristic of the ring is p (see e.g. [1], Proposition
9, p. 27).

THEOREM 2 (cf. also [4], p. 539). Let R = (R; +, —, 0, ) be a finite
simple field and let R, = (R; +, —, 0, -, e) be an abstract algebra obtained
from R by adjoining the unity e as a constant to fundamental operations.
Then every permutation of the set R is a weak automorphism of R,, and
permutation T of R is a weak automorphism of R if and only if ©(0) = 0.

Proof. Consider an arbitrary permutation r of the set B which
preserves the element zero. It follows from the interpolation formula
of Lagrange that there exists a polynomial with integral coefficients,
of a degree < p—1, and without a free summand, which for every zeR
takes the value 7(z). So the operations z@y = (v7'(2)+17'(y)), 2Oy
= 7(t7!(x) - 7' (y)) are algebraic, and the mapping f+>f* defined by
(1) will be a bijection of the set of algebraic operations of the algebra
R onto itself. Therefore every permutation of the set R preserving 0 is
a weak automorphism of R.

It follows from Theorem 1 that a weak automorphism of R, can
take an arbitrary value for element 0, and since weak automorphism
of R is simultaneously a weak automorphism of the algebra R, (see Corol-
lary to Theorem 1), every permutation of R is a weak automorphism
of the algebra fR,.

From Theorem 2 we get at once

COROLLARY. If R is a p element field, where p is a prime, then R = (R;
4+, —,0,-) has (p—1)! weak automorphism and R, = (R; +, —,0, -, ¢)
has p! weak automorphisms.

Now we shall prove the main result of this paper.

THEOREM 3. Let R, = (B; +, —, 0, -, ¢) be an integral domain which
is either infinite or has 2,3 or 4 elements, treated as an abstract algebra
with the unity ¢ as a fundamental constant. Then a bijection 7: R— R
is a weak automorphism of R, if and only if the element v(e)— v(0) has
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an tnverse and for every x,yeR the conditions

(5) T(@+y) = (@) +7(¥)—=(0),
(6) t(@y) =[r(®@) T(y)—7(0)(z(®)+T(¥))+(e)7(0)] (z(e)—7(0) 7,

where ©(0), t(e)eR,, are satisfied.
Moreover, we have

(7) (z(e)—=(0)™! =77 (e)—77"(0),
(8) 7(0)(z7! (6)—771(0)) = —<7(0).

Proof. First we prove the necessity. From the remarks of Section 1
it follows that to operations + and - correspond, by a fixed weak auto-
morphism 7, associative and commutative operations @ and © such
that the operation ® will be distributive with regard te @, and will have
the neutral element z(e), the operation @ will be a group operation with
the neutral element 7(0), where 7(0) and z(e), being algebraic constants
in R,, belong to the subring R, generated by unity e.

In the case of |R| = 2, 3 or 4 the hypothesis can be verified directly.
Let thus R contain infinitely many elements. We shall use the isomorphism
of the set of algebraic operations of R, with the ring of polynomials over E,.

As follows from commutativity of multiplication, # ®y is a symmetric
polynomial of two variables and so we can write it in the form

(9) (v (@) v (Y)) = 20y = fi(@®)+ .(¥)+9(z,y),

where f, and f, are polynomials of one variable and ¢ is a polynomial
of two variables over R,. Taking into consideration associativity

(10) (#QY)Oz =20(y©O2),

we see that the polynomial (9) must be of degree 1 with respect to each
variable, for if it is, e.g., of degree » > 2 with respect to variable z, then
in the left-hand side of equality (10) we have a polynomial of degree
n? with respect to x, and in the right-hand side — of degree » with respect
to the same variable. Therefore n? = n (modulo the characteristic of
the ring R, if it is finite).

In view of the commutativity of © we get the general form

(11a) 2QY = a,.(¢+Y)+ a2y + a;.¢€,

where a,,, a,,, a;, belong either to Z or to Z, (this dependé on the charac-
teristic of the ring R).
Operation @ has similar form:

(11b) DY = by (x+y)+ by, 2y 4 by, €.
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However, from distributivity of © with regard to addition @ we have

(12) @by (B +Y)+ Ay by 2y + @y, by 6+ a2+
+ g, by (B4 Y) 2+ Gy by Y2+ @y, b3, 2 a3, €
= b [, (2 + Y+ 22)+ ap. (v + y) 2+ 205, 6]+
+ by [@y, (X + 2) + @y, 02+ a3, €] [0, (Y + 2) + @5, Y2+ a3, €]+ by 0.

Thus it follows that b,, = 0.

In fact, by a comparison of coefficients of xyz? in (12) we have either
by, ai, =0 or b,.aj.e = (b, €)(a,¢)}? =0, whence b,, =0 or a,, =0. If
b,, # 0, then in virtue of the equality a,, = 0 and (11a) we should have
2OQY = a,,(r+y)+ a,.e. Since t(e) is a neutral element of the operation
®, we have a,, = 1. But using in (12) the equalities a,, = 0 and a,, =1
we get

blr(w+y)+ bz:“‘?/‘*‘ b316+ z+ a3te
= blt(w+y—|—2z+2a3,6)+bz,(w-l—z-{—aa,e)(y—l—z-{—a3,e)+b3,e,
whence, by a comparison of coefficients of zz, we come to a contradiction.

Taking into account b,, = 0 and the fact that 7(0) is a neutral element
of operation @ we get immediately from (11b) the equalities b,, = 1 and
b;,e = —1(0). Therefore we get the formula

(%) 2@y = t(r @)+ 77 () = a+y—1(0)
equivalent to (5).
Now putting into (12) the values of b,,, b,,, b;, we get

a’lr(w-,f_y)_ altt(o)—*— a’lrz+ a’2r($+ y)z— a,z,-r(O)z+a,3,e

= @1, (#+ Y+ 22)+ ay, (2 +Y) 2+ 25,6 —7(0),

whence, by a comparison of coefficients of these poynomials, we have
the equalities

(13) _G’Zrt(o) = @,,€,
(14) T(O)—GI,T(O) = a3, €.
However, putting y = r(e) in (11a) we have

T = ), 8+ a5, 7(6) T+ ay,7T(€) + ay,¢,

whence

(15) a,.e+a,t(e) = e,

(16) a,.7(e)+aze =0.
From (13) and (15) we get

(17) a,.(t(e)—7(0)) =e.

(Hence the element z(e)—7(0) has the inverse.)
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From formulas (14) and (16) we infer the equalities
(18) a,(v(e)—7(0)) = —‘r(O
(19) as,(r(e) —7(0)) =
From equalities (17), (18) and (19) in an apphcatlon to (11a) we
obtain the equality
(%) 2Oy =r(r (2) 77" (y)) = [oy—7(0)(@+ )+ (0)v(e)]-(x(e) — 7(0))*

equivalent to (6). Therefore we proved necessity of conditions (5) and (6).

Now let 7: R—> R be a bijection, let the element 7(e)—v(0) has
an inverse, and let equalities (5) and (6) be satisfied. For the proof of
sufficiency it is sufficient, in view of remarks of Section 1, to verify that
the mapping

¢(@) = (z—17(0))(z(e)—7(0))~*
is an isomorphism of the ring (R; @, ®) onto the ring (R; 4+, -). Obviously,
this mapping is a bijection. Further, the equalities

p(@®y) = [[z+y—7(0))—(0)](z(6)—(0)) ! = p(x)+o(¥),

p(@QY) = [([zy—=(0)(x+y)+z(e)7(0)){z(e) —=(0)) ' —=(0)](x(e) — (0))*
= [(x—7(0))y— 7 (0)z+ 7(€)T(0) — 7(0)(z (6) — =(0))]( (¢) — 7 (0))*
= [[z—7(0)y—7(0)(x—z(0))|(z(e) — = (0)) * = () p(¥)

hold. Therefore the first part of Theorem 3 is proved.

Now we shall prove equalities (7) and (8) for every reAut*(R,). B
applying formula (5) we get easily the equality

(20) 7(ax) = ar(x)— (a—1)7(0),

where a is an element either of Z or of Z, (this depends on the characteristic
of the ring R,). Now, considering the mapping z~' which must also be
a weak automorphism and using formulas (5), (6), (20), (*), (**), and the
analogous equality for 77!, we obtain

xy(zr(e)—7(0)) = v (v (x) O T (y))(r(e)—7(0))
= (z()—(0)) 7 [[r (@) = (¥) —1(0)(1 )+ 7(y))+ 7 (0) 7(e))(z(e) — 7(0)) ]
=t (@) T(y)—7(0)(z(2) + T (y)) + v(0) v (e)| —
—('r )—T( 0)”(1(6 —1( ) ! 6]1_1(0
=t r(@)r(®)+ 77— (0) (v (@) + T (¥))] + T(0) T (e) T~ () —
—(z(0)z(e)—e)T ' (0)— 31_1(0)-1—(1(6)—1(0 ))T7(0)
=1t r(@)T(y)— = (0)r (v (2)+ = (y)) +
+7(0)z(e)(r ™ (e)— 71 (0))+ T(e)T ' (0)— 7 (0)
= [oy— v 1(0) (@ +y)+ 7 (0)r ' (e)](z7 (&) — =1 (0)) ' —
—1(0)[z+y—1(0)]+ (0)z(e)(z7 (e) — =7 (0)) + 7 (e) T} (0) — =7 (0).
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Therefore we gained the equality
wy(r(e>—f(0) =wy(r“(e)—r“(0 )7 =N 0)(z T (&)= 7H(0)) @ +y) +
L)z Y( ('r )—7 1(0)) '—2(0)(x+9)+ 7(0) "1 (0)+
T(O)f(e)( _1(6 - "(.0))+r(.6 ~H0)—771(0),

whence by a comparison of coefficients of zy and r+y we get formulas
(7) and (8). This completes the proof of Theorem 3.

It is worth to remark that taking into consideration formulas (7)
and (8) one can write equality (6) in a simpler form:

(zy) = (v (e) =771 (0)) v(@) v (y) + 77 (0) (v (2) + (y)) — T () T77(0).

Remark 1. It is well known that if R, is a field, then equalities
(*) and (**), where tv(0) and 7(e) are certain (arbitrary) elements in R,
define new operations @ and © with respect to which R is again a field
isomorphic to the original one (see [7], p. 11). It was proved in [4] that
this form is also necessary for the set B with new operations @ and ®
defined by symmetric polynomials to be a field isomorphic with the original
field (Theorem 1, p. 537). ‘

In view of Theorems 1 and 3 and of the observation that a weak
automorphism of R = (R; +, —, 0, ) must carry the only algebraic
constant 0 onto itself we get

CoroLLARY 1. If R = (R; +, —,0,*) 28 an integral domain which
18 either infinite or has 2,3 or 4 elements, then a bijection v: R — R 1is
a weak automorphism of R if and only if the element v(e) has an inverse
and for every x,yeR the equalities

(%) T(@+y) = t(x)+7(¥),
(6) 7(2y) = [z(e)] 7 v (2)7(y),
where t(e)eR,, are satisfied.

Moreover, equality
(7') [7(e)]™" = 77'(e)
also holds true.

Remark 2. Note that neither the hypothesis of Theorem 3 nor
that of Corollary 1 can be extended to all finite integral domains. For
let p > 3 be a prime and let R be a finite simple field with p elements. Then
every permutation v of R preserving 0 and e is, in virtue of Theorems
1 and 2, a weak automorphism of both R and R,. If formulas (5), (6)

and (5’), (6’) were satisfied for every weak automorphism of R, or ‘R,
respectively, then for the considered permutations we should have

2@y = (v (@) + 1Y) = 2+y,
vy = t(v7H(@)v"(y)) = 2y.
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So the field R would have at least (p—2)! automorphisms which
is impossible.

From Corollary 1 we obtain two following corollaries:

COROLLARY 2. Let R = (R; 4+, —, 0, ) be an integral domain. Then
the factor group Aut*(R)/Aut(R) is isomorphic to the multiplicative group
G, of all divisors of unity which are elements of the subring R, of R.

Proof. It follows from Corollary 1 that the mapping h: Aut*(R) — G,
defined by h(r) = [z(e)]™' is correct. We shall prove that this mapping
is a homomorphism. Let 7,, 7, Aut*(R). Then, in view of Corollary 1 and
of formula (20), the equalities

271 (@) = [v1(6)]7" 7a(r1(2) 71(y)) = [71(€)17" [72(6)]1 7" 7a(71(2)) 7271 ()

hold. Therefore [z,(z,(e))]™" = [za(e)17 [1(e)]7"
It is easy to see that kernel of k is the group of automorphisms of R,
which completes the proof of Corollary 2.
- From Corollaries 1 and 2 it follows immediately that

COROLLARY 3. If R is an integral domain of characteristic 0, then for
every weak automorphism either [t(e)]™' =e or = —e, and the factor
group Aut* (R)/Aut(R) is the two-element group.
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