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I. INTRODUCTION

A non-trivial topological Hausdorff space no two of whose open
sets are homeomorphic is called chaotic. Introducing this concept in 1970,
Nix [34] asked three problems (see (A), (B) and (C) in Section III), the
first two of which have been answered with the help of the continuum
hypothesis [4]. In this paper some sufficient conditions are stated for
a space to be chaotic. These conditions enable us to verify that some well-
-known examples of spaces are chaotic and, therefore, they let us solve
all three problems in the affirmative without any additional assumptions.
Furthermore, a modification of the dendrite constructed in 1932 by Mil-
ler [33] leads to an example of a chaotic dendrite whose points are of
Menger-Urysohn order at most 4. This particular space concentrates
several properties in one example. There are also discussed connections
between chaotic spaces and some other kinds of spaces, e.g. rigid spaces.

The author thanks Professor Bronistaw Knaster who has paid the
author’s attention to Zarankiewicz problem [43], and Professor Eric
K. van Douwen who has pointed out some early references ([21], [22],
[28], [30] and [38]).

II. DEFINITIONS AND PRELIMINARY RESULTS

1. A non-trivial topological space X is said to be chaotic ([34], p. 975)
if for any two distinct points p and g of X there exist an open neighbour-
hood U of p and an open neighbourhood V of ¢ such that no open subset of
U is homeomorphic to any open subset of V. We have ([34], p. 975) the
following proposition which can easily be verified :

PROPOSITION 1. A topological space X 18 chaotic if and only if X is
a Ilausdorff space no two of whose distinct open sets are homeomorphic.

Oonsider a class C of topological spaces which is closed with respect
to homeomorphisms (i.e., if X e C, then h(X) e C for any homeomorphism
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h of X onto h(X)) and which is closed with respect to open subspaces
(i.e., if X € C and Y is an open subspace of X, then Y e C). Let A be a set
and let ¢ be a function which assigns to each pair (X, z), where X € C
and z € X, an element ¢ (X, z) of A in a way such that
(1) ¢ is topologically invariant, i.e., for every homeomorphism
h: X — h(X) and for every point x € X we have ¢(X, z) = tp(h(X), h(z));
(2) @ is unchanged by restriction to open subspaces, i.e., if ¥ is an
open subspace of X, then for every point # of ¥ we have ¢ (Y, z) = ¢(X, 2).
PROPOSITION 2. Let C and ¢ be as above. If a topological space X € C
contains a dense set K which is preserved under homeomorphisms, i.e., for
every open subset U — X and for every homeomorphism h: U — h(U) =« X
we have h(UNK) c K, and, furthermore, K is such that for every two dis-
tinct points x, and x, of K we have ¢ (X, x,) # ¢(X, x,), then X s chaotic.
Indeed, suppose that a space X satisfies the conditions formulated
above and that X is not chaotic. Thus, by Proposition 1, there are two
distinet open sets U and V in X which are homeomorphic under a homeo-
morphism k: U — h(U) = V. The set K being dense in X and U being
open, the intersection UNK is dense in U. Then for an arbitrary point
z e UNK we have

¢(X,2) =¢(U,2) =p(h(0), h(z)) = ¢(V,h(2)) = ¢(X, h(2)),
whence we conclude x = h(x). Thereby U = h(U) = V, a contradiction.

2. A continuum means a compact connected Hausdorff space. A curve
means a one-dimensional continuum.

PROPOSITION 3. Assume that

(i) a continuum i8 such that no two distinct non-degenerate subcontinua
are homeomorphic.

Then the continuum is chaotic.

Indeed, let X be a continuum which is not chaotic. Then, by Propo-
sition 1, there are two distinct open subsets U and V of X which are
homeomorphic under a homeomorphism A: U — h(U) = V. Without loss
of generality we may assume that U and V are disjoint. Let p € U and
q € V. The continuum X being a regular space (cf. [11], Theorem 29.12,
Pp. 263, and Theorem 18.8, p. 121), there exist (see [11], Corollary 18.7,
Pp. 120) open sets U, and V, such that

peU,cUcU and gqeV,cV,cV.

Let ¢, and C, denote the components of U, and ¥, which contain p
and g, respectively. Both C, and C, have common points with boundaries
of U, and ¥, (see [24], § 47, III, Theorem 1, p. 172) and, therefore, they
are non-degenerate. Then there are non-degenerate subcontinua K, = C,
and K, c C, such that A(K,) = K,. Thus X does not have property (i).
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It will be shown that the inverse to Proposition 3 is not true even
for metric locally connected continua (see Statements 10 and 13 in the
sequel).

3. De Groot has studied rigid spaces, i.e., spaces having a trivial
autohomeomorphism group ([15], see also [18], [31], [35], [39] and [40]).
It is easy to verify the following

PROPOSITION 4. A space X is rigid if and only if X contains a dense
subset K such that each point of K is a fixed point with respect to any
homeomorphism of X onto X.

De Groot and Wille (see [18], 4, p. 444) considered also continua which
are rigid under topological transformations into themselves. We rename
such spaces admitting the following

Definition. A topological space X is called strongly rigid provided
the only homeomorphism of X into itself is the identity of X onto X.

It is obvious that each strongly rigid space is rigid. An example of
a rigid but not strongly rigid plane universal curve is described in [18],
p. 442,

Similarly to Proposition 4 for rigid spaces we have the following
proposition for strongly rigid ones, the proof of which is again immediate.

PROPOSITION 5. A space X is strongly rigid if and only if X contains
a dense subset K such that each point of K i8 a fixed point with respect to
any homeomorphism of X onto a subspace of X.

PROPOSITION 6. Each chaotic space is rigid.

In fact, if a space X is chaotic, then it is Hausdorff by Proposition 1.
Suppose that X is not rigid, and let 2 be a homeomorphism of X onto
itself which is different from the identity. Thus there exists a point p # h(p)
= ¢. Let U and V be disjoint open neighbourhoods of p and ¢, respec-
tively. Hence some open neighbourhood U’ < U of p is transformed
homeomorphically under 2 onto an open neighbourhood V' = h(U') < V
of ¢, and, therefore, X is not chaotic.

The converse implication does not hold (see the final part of Sec-
tion V). Moreover, we cannot substitute “strongly rigid” for “rigid” in
Proposition 6: there are spaces which are chaotic but not strongly rigid
(see Statements 7 and 8).

PROPOSITION 7. If a continuum satisfies condition (i) of Proposition 3,
then it is strongly rigid.

Indeed, let X be a continuum which is not strongly rigid. Then there
is a homeomorphism h: X — h(X) ¢ X of X onto a subcontinuum A (X)
of X which is not the identity. Thus in X there exists a point p # h(p)
= ¢. Let U and V be disjoint open neighbourhoods of p and g, respectively.
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The further arguments are exactly the same as in the proof of Proposi-
tion 3.
Obviously, the inverse implication does not hold.

4. Recently, Scott has studied [37] another property stronger than
rigidity. A space X is said to be totally inhomogeneous if for any two dis-
tinct points p and ¢ of X the spaces X\ {p} and X\ {q} are not homeomor-
phic. It is clear that if X is totally inhomogeneous, then it is rigid. The
converse implication fails, even for locally compact metric spaces ([37],
Example, p. 489). But if X is a compact Hausdorff rigid space, then X
is totally inhomogeneous ([37], Theorem 1, p. 490) and, therefore, for
compact Hausdorff spaces rigidity coincides with total inhomogeneity.
Thus it follows from Proposition 6 that each compact Hausdorff chaotic
space is totally inhomogeneous. The converse implication does not hold
([87], p. 492).

5. A property which is related in some way to the notion discussed
above is incompressibility. A topological space is said to be incompressible
if it is homeomorphic to no proper subspace of itself (see [12]; some prop-
erties and examples of such spaces are discussed also in [10] and [19]).
It is evident that each strongly rigid space is incompressible.

Another related concept is that of a reversible space. Recall that
a topological space is said to be reversible if each continuous one-to-one
mapping of the space onto itself is a homeomorphism (see [36], p. 129).

III. SOME KNOWN EXAMPLES

In 1970 Nix [34], introducing the concept of the chaotic space,
proposed the following problems:

(A) Do chaotic spaces exist?
(B) Do chaotic spaces of cardinality of the continuum exist?

(C) Do completely normal, connected and locally connected chaotic
spaces exist?

Problems (A) and (B) were solved in the affirmative in 1974 by Berney
[4] who has constructed — assuming the continuum hypothesis — an example
of a separable metric space X which has the cardinality of the continuum, is
linearly ordered (in fact, X is a subspace of the unit interval of reals) and is
chaotic. For an announcement of another answer (of all three problems) see
[20], Theorem 4, p. 232. Scott [37], considering totally inhomogeneous
spaces, has shown that, given any infinite cardinal » and a compact
Hausdorff space X of cardinality 2” such that X has a basis of cardinality »
and that every non-empty open subset of X has the cardinality 2%, there
are subspaces R, (for a < 2*) each being chaotic, dense in X and of
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cardinality 2% which are pairwise disjoint and pairwise non-homeomor-
phic (see [37], the proof of Theorem 2, p. 491, and a remark on p. 492).
Thus chaotic spaces exist in profusion. However, the spaces R, are very
non-constructive ([37], p. 492). It will be shown that many constructive
examples of spaces are known in the literature (known before Nix asked
questions (A), (B) and (C)) which can — not too hard — be verified as chaotic
spaces. For example, let us note that as early as in 1926 Knaster asked
if there exists an infinite subspace of a linear space that is homeomorphic
to none of its proper subsets (i.e., that is incompressible; see [21], p. 201).
This question has been answered by Kuratowski who has shown ([21],
3, p. 207-208) that the real line has a dense rigid subspace. It is easy to
see that no two distinct open subsets of this example are homeomorphic,
so it is chaotic.

1. As an answer to a question asked by de Groot and McDowell
[17], Lozier [31] has proved the following

STATEMENT 1. For any infinite cardinal x there exists a completely
reqular, nmon-compact, zero-dimensional space X* of cardinality » which
28 chaotic.

Indeed, it is shown that any two distinet points of X* have different
values under a topologically invariant, ordinal-valued function kx(x)
(where X = X”* and @ € X) which is unchanged by restriction to open
subspaces (see [31], Theorem 1, p. 819; cf. [37], p. 492). Taking kx(z)
for (X, z) in our Proposition 2, we see that X* is chaotic.

2. In 1955 de Groot ([14], p. 204) raised the question “Does there exist
a connected set which cannot be mapped continuously and non-degener-
ately onto any proper subset?”. In the same year Anderson [1] raised
the questions “Does there exist a non-degenerate continuum which admits
only the identity or a constant mapping into itself? If so, does there
exist one all of whose non-degenerate subcontinua have this property?”.
And Moore (see [9], p. 241) has asked whether there exists a hereditarily
indecomposable continuum having property (i) (see Proposition 3). Answer-
ing all these questions by one example, Cook [9] constructed the continuum
M, whose properties can be summarized as follows:

STATEMENT 2. There exists a metric continuum M, such that

(1) of H 18 a subcontinuum of M, and f is a mapping of H onto the
non-degenerate subcontinuum K of M,, then H = K and f i3 the identity
mapping onto itself; A

(2) the identity is the only mapping of M, onto its non-degenerate sub-
continuum

(3) M, 48 hereditarily indecomposable;

(4) no non-degenerate subcontinuum of M, is contained in the plane;
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(5) M, is one-dimensional;

(6) M, has property (i);

(7) M, is strongly rigid;

(8) M, 8 chaotic.

In fact, (1), (3) and (6) are proved in [9], Theorems 8 and 9. Condition
(2) is an immediate consequence of (1). For (5) and (4) see [9], Note,
P. 248. And, finally, (7) and (8) follow from (6) by Propositions 3 and 7.

In connection with de Groot’s paper [14] recall that in 1931 Lin-
denbaum claimed without proof that (see [28], p. 114; cf. [29], p. 131,
and [30], p. 185; cf. also [23], § 35, I, p. 423-426, especially Theorem 5,
P. 426): '

(a) there is a family of 2° subspaces of the real line none of which is
a continuous image of another (¢ denotes the cardinality of the real line).

This was proved (in an extended form) in 1947 by Sierpinski ([38],
Pp. 30). Kuratowski has shown ([22], p. 34 and 38) that the same family
can be used for (a) and for

(b) there is a family of 2° subspaces of the real line none of which
can be embedded into another.

Kuratowski’s methods are the same as the later construction by de
Groot [14].

3. In 1959 Anderson and Choquet [2] constructed three continua
M, M’ and M" each of which has property (i) of Proposition 3 and, thereby,
is a chaotic space. We recall here other properties of these continua.

It is proved in [2], Theorem IIT (3), that the continuum M contains
no uncountable collection of disjoint non-degenerate subcontinua. Con-
tinua having this property are called Suslinian (see [26], p. 131; cf. [27],
Pp. 55). The continuum M being Suslinian, it is hereditarily decomposable
([26], 1.1; cf. [2], p. 347 and 352). M is constructed in the plane in such
a way that none of its subcontinua separates the plane (see [2], Theo-
rem IIT (1)), thereby, being hereditarily decomposable, it is hereditarily
unicoherent, i.e. every two of its subcontinua have connected intersection
(see [2], p. 352; cf. [7], (38), p. 82). Continua which are hereditarily de-
composable and hereditarily unicoherent are called A-dendroids (see [6],
the definition on p. 15 and Theorem 1 on p. 16). Thus M is one-dimensional
(cf. [6], (1.6), p. 16). Consequently, the continuum M can be described as
a plane Suslinian A-dendroid having property (i). Therefore, we have

STATEMENT 3. There exists a metric continuum M such that

(1) M is contained in the plane;

(2) mo subcontinuum of M separates the plane;

(3) M vs hereditarily unicoherent;

(4) M contains mo uncountable collection of disjoint non-degenerate
subcontinua;
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(5) M 1is hereditarily decomposable;

(6) M is one-dimensional;

(7) M has property (i);

(8) M s strongly rigid;

(9) M 1is chaotic.

The second example constructed in [2] is a continuum M’ which
again has property (i), which lies in the plane but, in contrast to the pre-
vious example of M, every non-degenerate subcontinuum of which sep-
arates the plane. A plane continuum having the latter property has been
constructed for the first time by Whyburn [42] (for another construction
see [257, Example 1, p. 276-281). A plane continuum having that property
must be one-dimensional. So we have (see [2], Theorem IV, p. 353)

STATEMENT 4. There exists a metric continuum M’ such that

(1) M’ i8 contained in the plane;

(2) every subcontinuum of M’ separates the plane;

(3) M’ is one-dimensional;

(4) M’ has property (i);

(b) M' is chaotic.

The properties of the third continuum, M'’, are — apart from prop-
erty (i) — again property (4) formulated in Statement 3 for M (thus
M’ is Suslinian, and hence hereditarily decomposable; this implies, by
the Mazurkiewicz theorem (see [24], § 48, V, Remark 2, p. 206), that M"’
is one-dimensional). But an essentially new property of M’ is its hereditary
non-planability. So we have ([2], Theorem V, p. 353)

STATEMENT 5. There exists a metric continuum M'' such that

(1) mo mon-degenerate subcontinuum of M'' is contained in the plane;

(2) M contains mo wuncountable collection of disjoint non-degenerate
subcontinua;

(3) M'" is hereditarily decomposable;

(4) M is one-dimensional;

(5) M'' has property (i);

(6) M'' 18 chaotic.

Another example of a plane continuum which has property (i) (and
which thereby is chaotic) was published in 1961 by Andrews [3]. An
additional property of Andrews’ example M’’’ is the chainability.

Recall that a metric continuum X is said to be tree-like (arc-like
= snake-like = chainable) if it is degenerate or if, for every positive number
¢, there is an ¢-map throwing X into a finite tree (an arc). The following
statement is known for curves:

() Every ftree-like curve is hereditarily wunicoherent.

In fact, let C be any subcontinuum of the tree-like curve and let ¢
be a map from C onto the unit circle. Since C is also tree-like and the unit
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circle is a linear graph, g is homotopic to a constant (see [6], Theorem 1,
P. 74). Consequently, C is unicoherent (see [24],§ 57, II, Theorem 2, p. 437).

It can easily be proved, in the same manner as in [2], p. 352, that
the Andrews example M’ contains no uncountable collection of disjoint
non-degenerate subcontinua. Thus M’’’ is Suslinian and, as previously,
it is hereditarily decomposable ([26], 1.1, p. 131), whence it is one-dimen-
sional ([24], § 48, V, Remark 2, p. 206). Further, M’’’ being chainable,
it is tree-like, thus, by (*), is hereditarily unicoherent. So the continuum
M'"” can be described as a plane chainable Suslinian A-dendroid having
property (i). Therefore, we have

STATEMENT 6. There exists a metric continuum M~ such that it 18
chainable and has all properties listed in Statement 3 for the continuum M.

4. In 1958 de Groot and Wille ([18], 2, p. 442) constructed a plane
locally connected continuum P of positive measure, universal with re-
spect to the class of all plane curves and rigid with respect to those trans-
formations of P onto itself which are locally topological. We prove that
P is chaotic. To this end we recall here the construction of P.

Let D be a disc in the plane and let {a,;} be a dense sequence of points
in the interior of D. We define a sequence of propellers in D. The firstis
bounded by a two-bladed curve having a, as its centre, which does not
meet the boundary of D. We proceed by induction. Suppose that the first
n —1 propellers have already been defined. Let a, be the first member of
the sequence a; which is in no previously constructed propeller. Then the
n-th propeller is n-1 bladed, with centre at a,, and lies inside a circle
which misses all previously constructed propellers and the boundary of D.
Moreover, we take care that the diameters of the propellers tend to
zero. The space P is the disc D with the interiors of all propellers removed.

To see that P is chaotic, consider the class C of topological spaces
generated by P, i.e. the class consisting of P, all open subspaces of P
and all their homeomorphic images. If we take a suitable small neigh-
bourhood U of an a; in P, then U\{a;} has ¢+1 components which have
a; a8 their limit point. For every other point p e P\|J{a;: ¢ =1,2,...}
and for a suitable small neighbourhood U of p in P the set U\{p} is con-
nected. Define ¢(P, ) as the number of components of U\ {z} for a suit-
able small neighbourhood U of ». The set K of all centres a; of the propel-
lers is dense in P (see [18], p. 443). It is easy to verify that all conditions
mentioned in Proposition 2 are fulfilled. Hence P is chaotic. So we have

STATEMENT 7. There exists a metric continuum P such that
(1) P is contained in the plane;

(2) P s locally connected;

(3) P 48 one-dimensional;

(4) P is universal with respect to the class of all plane curves;

rrt
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(b) P i8 of posilive measure;

(6) P is rigid with respect to local homeomorphisms;

(7) P i8 mot strongly rigid;

(8) P 18 chaotic.

A similar construction may be carried out in the three-space, giving
a chaotic universal locally connected curve (see [18], p. 443):

STATEMENT 8. There exists a metric continuum P’ such that

(1) P’ is locally connected;

(2) P’ 48 one-dimensional;

(3) P’ is universal with respect to the class of all curves;

(4) P’ is of positive measure;

(5) P’ is rigid with respect to local homeomorphzsms,

(6) P’ is mot strongly rigid;

(7) P’ is chaotic.

Starting with a (k-+1)-dimensional ball, where % is an arbitrary
natural, and carrying out a very similar construction we get

STATEMENT 9. For every natural k there exists a metric continuum
P"" such that

(1) P s locally connected;

(2) P 48 k-dimensional;

(3) P 18 of positive measure;

(4) P"' 48 chaotic.

5. Another example of a locally connected rigid continuum whose
construction is described in [18] is a rigid dendrite. For a very similar
example see [37], p. 492. Like previously we show that this continuum is
not only rigid but also chaotic. In order to attain this we recall here the
construction of that continuum.

Let us start with the sequence {7}, ¢ =1,2,..., where each T,
is the union of ¢ straight-line unit segments emanating from one point,
called the origin of T,. We proceed by induction. Define Y, as the unit
straight-line segment. Let « be the mid point of ¥,, and define Y, as the
union of ¥, and a diminished copy of T; = T, in such a way that the
diameter of this copy is less than 1/2 and that the point # is the only com-
mon point of ¥, and 7',. Assume now that a dendrite Y, has been defined
in such a way that it is the union of finitely many straight-line segments
and such that Y, contains (properly diminished) copies of T,, T, ..., T} ,
i.e., of the first j, terms of the sequence {T;}. To define Y, , consider all
arcs contained in Y, having either branch points or end points of Y, as
their ends, and such that each interior point of every of them is a point
of (Menger-Urysohn) order 2 in Y, . Observe that we have only finitely
many, say m(n), such arcs; furthermore, each such arc is a straight-line
segment. Let # denote its mid point. With each point 2 so defined we asso-
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ciate, in a one-to-one way, a set T; taken from the m(n) consecutive
terms of the sequence {7}, i.e., we use in this step of the construction
the sets T .1, T; ;29 ...,TjnH’, where j,,., =j,+m(n). We take each
mid point « as the origin of the diminished copy of the associated set
T, (where 4 is one of the indices j, +1, j,+2, ..., j,;1) in such a way that
the diameter of the copy of T, is less than 1/2"*' and that Y, has only
the point 2 in common with the added copy of T,;. All this can clearly be
done so carefully that the resulting set Y, , is a finite dendrite.
Furthermore, the whole construction can be realized so that the closure
of the union of dendrites Y, successively obtained is itself a dendrite
(cf., e.g., the end-point compactification in [13]). We may suppose then
that

Y=UY,
n=0
is a dendrite.

To see that Y is chaotic let us observe that the set K of all branch
points of Y is a dense set in ¥ which must be mapped into itself under
any homeomorphism of Y into Y. If we define ¢ (Y, y) as the Menger-
Urysohn order of Y at the point y, we see that all conditions assumed in
Proposition 2 are satisfied and, therefore, Y is chaotic.

We prove now that Y is not strongly rigid. To see this we observe
that for every point p of Y and for every component C, of ¥\{p} the set
0, U{p} contains a homeomorphic copy of the whole Y. In fact, if p is an
end point of Y, then p does not separate ¥ ([24], § 51, V, Theorem 4,
p- 293). Thus C,u{p} = Y and the conclusion holds trivially. If p is
a point of order n > 1, then each component C, of Y \{p} is an open set
([24], § 49, II, Theorem 4, p. 230) and, by construction, each arc which is
contained in C, contains branch points of ¥ which are of arbitrarily great
order. Note that the set ¢ = C,U{p} is again a dendrite. One can map
homeomorphically the segment Y, of ¥ onto the maximal straight-line
segment L in C which ends at p, taking care of the fact that the mid point
x of Y, is mapped on a branch point b of this arc. Next, choose a straight-
-line segment emanating from b and not contained in L and map T, onto
it homeomorphically such that the mid point of T, is put on a branch
point of C. If necessary, we change a little the previous homeomorphism
of Y, onto L so that

(a) mid points of the straight-line segments emanating from z are
mapped onto branch points of C,

(b) the homeomorphism is not-changed at =.

Continuing this process in a routine way (see, e.g., the proof of the
universality of the universal dendrite in [32], p. 321 and 322; cf. [41],
IIT, p. 57 and 58) we can prove that the limit transformation is a homeo-



CHAOTIC CURVES 229

morphism of Y onto a subcontinuum of C. Consequently, Y is not a strongly
rigid space.

So we have the following

STATEMENT 10. There exists a metric continuum Y such that

(1) Y 48 a dendrite;

(2) the set of all end points of Y is dense in Y ;

(3) for every natural m the set of all points of Y which are of order at
least n is dense in Y ;

(4) for every matural n > 3 the dendrite Y contains exactly one point
of order m;

(8) for each point p of Y and for each component C, of Y\{p} the
continuum C,U{p} contains a homeomorphic image of Y;

(6) Y 18 mot strongly rigid;

(7) Y 48 chaotic.

If we start with a k-dimensional cube (for an arbitrary natural k)
or with the Hilbert cube, and if we repeat the above-given construction,
being careful of the fact that the set K of the origins of all added 7,’s
must be dense in the whole resulting space (thus — in particular — in

the cube Y,), i.e., that KN YO- = Y,, then we can get rigid locally connected
continua of arbitrarily high or infinite dimension. So we have (cf. [18],
p. 443)

STATEMENT 11. For every k =1,2,...,n,N,, there exists a metric
continuum Y' such that

(1) Y’ is k-dimensional;

(2) Y’ s locally conmected;

(3) Y’ 28 acyclic;

(4) Y’ s chaotic.

Let us notice that all examples of chaotic locally connected curves
constructed here (see Statements 7, 8 and 10) contain points of arbitra-
rily great Menger-Urysohn order. However, in [18], p. 445-446, the authors
described a construction of a rigid locally connected one-dimensional
continuum P, all points of which have order less than or equal to 6. Using
the same methods as for the previous example, in particular Proposition 2
in which we take the dense set of points of order 6 in P, as K and the
number of links of the chain which is affixed to every point of K as the
invariant ¢, we can prove that P, is chaotic. Thus we have

STATEMENT 12. There exists a metric continuum P, such that
(1) P, ts contained in the plane;

(2) P, 18 locally connected;

(3) P, is8 one-dimensional;

(4) all points of P, are of order less than or equal to 6;
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(B) the set of points of order 6 i dense in P,;

(6) each open subset of P, contains a simple closed curve;

(7) P, 28 strongly rigid;

(8) P, 8 chaotic.

Let us eome back now to the Nix problems (A), (B) and (C) recalled
at the beginning of this section. Since every metric space is completely
normal ([11], Theorem 29.19, p. 265), every metric locally connected
continuum which is chaotic constitutes an example that gives the affir-
mative answer to problem (C). Furthermore, since every metric continuum
is a separable space, it has the cardinality of the continuum. Therefore,
each of the examples mentioned in Statements 7-12 answers all three prob-
lems (A), (B) and (C) affirmatively, without any additional assumptions,
in particular without the continuum hypothesis.

IV. A OHAOTIO DENDRITE

The example of an incompressible space is a simple closed curve,
while a segment is not. As another example, in particular an incompres-
sible local dendrite, one can take the union of a finite dendrite and of fi-
nitely many disjoint circles such that every end point of the dendrite
belongs to exactly one circle which is disjoint with the dendrite out of
this end point. :

Zarankiewicz [43] proposed a problem which can be reformulated
as follows:

(D) Does there exist a dendrite which is incompressible?

The problem has been solved in the affirmative by Miller [33]. The
idea of the proof is based on the following proposition (see [33], Theorem,
p. 831).

PROPOSITION 8. A dendrite X i8 incompressible if it contains a set K
such that

(1) each point of K s a fived point with respect to any homeomorphism
of X onto a subcontinuum of X ;

(2) each point of X which ts not tts end point lies on an arc contained
in X and having its end points in K.

Each strongly rigid space is incompressible by the definition, but not
conversely, as the example of a simple closed curve shows. Note that the
dendrite Y constructed above is chaotic but very far from being incompres-
sible (this is because it has property (5) of Statement 10) while Miller’s
example of the dendrite § is incompressible but not chaotic; it is not rigid
even since it contains open arcs as open subsets.

We show however that a modification of Miller’s example leads to
the construction of a chaotic dendrite D. This dendrite D justifies in its
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turn an affirmative answer to problems (A)-(D), but also represents
a slightly stronger result than that of de Groot and Wille in [18], p. 445.
The following statement will be proved:

STATEMENT 13. There exists a metric continuum D such that

(1) D i3 a dendrite;

(2) each point of D is of order not greater than 4;

(3) for every n =1, 2,3 or 4 the set of all poinis of D which are of order
n i8 dense in D;

(4) D <s strongly rigid;

() D s chaotic.

1. Definition of the dendrites E,,, ,. For the reader’s
convenience, we repeat here the basic constructions described in [33], § 2.

The definition of the sets E,, . , where #; (i < k) can have either
of the values 1 and 2, will be by induction. Within a linear interval ab
ordered from a to b by < choose points a, so that

a,.,<a, and lima, =a.
n—-o0

Within each interval a,,,a, choose points a,,, so that

Oy < @y and  lima,, = a,.
m—>00

At each point a, and a,,, erect a perpendicular to ab. Take these
perpendiculars so that for any positive number ¢ only finitely many of them
have their lengths greater than e. The set of points obtained in this way
is called E,. The point a is called the origin of E,, and the perpendiculars
which we have erected are all referred to as perpendiculars of rank 1.
It is clear that E, is a dendrite.

Everything is the same in the definition of F, except for the one
change: the points a, , are taken within the interval a,,,a, so that

Cpmir < Gy, a0d lim a,,, =a,,,.
m—>o0

So E, is also a dendrite.

Let us now suppose that we have defined dendrites E, . .z, Where
z; =1 or 2 for ¢ < k. Liet us suppose furthermore that we have defined
the expressions origin of E, .. .z a0nd perpendiculars of rank kof B, ,, . .
To define the set E, , ., We proceed as follows. We replace each perpen-
dicular of rank k of E, .,z DY aset E, whose origin is the foot of the per-
pendicular. Furthermore, we do this, as we clearly can, so that the resulting
set B, ., ., i8 a dendrite. By the origin of E, . ., we mean merely the
origin of E,, . , and by perpendiculars of rank k+1 of E,, .. —
the perpendiculars of rank 1 of the sets FE, used in obtaining F

)Ty u;'l‘kl
from E, . ., .

5 — Colloquium Mathematicum XLI.2
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Everything is the same in the definition of K, ,, . ., except for the one
change: in obtaining E, ,, ... from E, . . Wwe use sets E, instead of E,.

2. Construction of the dendrite D. This construction, after
Miller’s construction in [33], § 3, is achieved by the use of the following
sequence of sets: E,, By, Fogyy ..oy g 915 ++-

First re-label these sets in the following order:W,, Wy, W,,..., W,, ...

We begin with a set W, whose origin is a point a and adjoin to it
three line segments ac, ad and ae so that the only point which any two
of the sets W, ac, ad and ae have in common is the point a. Let us denote
the resulting dendrite by .D,. Observe that just one of the four distinct
arcs ab =« W,, ac, ad and ae of D, which meet at a (namely the arc ab)
has the property that there is a sequence of branch points on it of Menger-
Urysohn’s order 3 which converges to a.

So far our construction and Miller’s one in [33] are exactly the same.
But now we proceed in another way. We consider the arc in D, having
either two branch points of D, or a branch point and an end point of D,
as its end points and such that all other points of the arc are not branch
points of D,. In other words, we consider the maximal are in D, having
the property that all its points of order 2 are of order 2 in D,. It is evident
from the construction that every such arc is a line segment. Denote the
mid point of this segment by z. We obtain, of course, a countable infinity
of points . With this countable infinity of points we associate, in a one-
-to-one way, the sets W, of odd indices =, i.e.,

W3’ WS’ W77 b W2m+1’ LA

and take x as the origin of the associated set W,,, ., = W () in such a way
that D, and W (x) have only the point # in common. Moreover, we attach
to the point z a straight-line segment having « as one end point and having
only # in common with W (2)uD,. All this can be clearly done so that the
resulting set D, is a dendrite. Observe that, for every point y of D, of
Menger-Urysohn’s order 4, just one of the four essentially distinct arcs
of D, which meet at y (namely the arc contained in W(x) if y = « or in
W, if y = a) has the property that there is a sequence of branch points
on it of order 3 which converges to y. Now, D, is related to D, in the same
way as D, is related to D,, except that we make use of sets Wy,
instead of sets W,,,,,. In general, D, ,, is related to D, in the same way
as D, is related to D,_, except that we make use of sets Wzn_l( et 1) in-
stead of sets W,_, . It can be observed easily that, for every point
y of D, of order 4, just one of the four essentially disjoint arcs in D, which
meet at y has the property mentioned previously. It is well known that
such a construction can be carried through so that the closure of the union
of the dendrites D, successively obtained is itself a dendrite. We may

suppose then that D = | D, is a dendrite.

n=1
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3. The proof of the properties of D. We notice first that any
branch point of D is either of order 3 or of order 4. The points of order
4 are the point a of D, and the points # which arise at successive stages
of our process of construction. We denote the set of all points of order
4 of D by K. Since we take in the construction the mid points = of all
maximal arcs whose interior points are of order 2 in D, the set K is dense
in D. Furthermore, notice that the above-mentioned property of points
of order 4 in each D, is preserved in D. Precisely, if y is in K, then there
is just one arc of four ares in D, ending at ¥ and disjoint out of it, such
that it contains a sequence of branch points of order 3 converging to .
Thus an open neighbourhood about a point ¥ € K contains points of order
3 in D and, henceforth, the density of the set of all points of order 3 in
D follows from the density of the set K of all points of order 4 in D. The
set of all points of order 2 is always dense in any dendrite ([32], p. 309;
cf. [24], § 61, VI, Theorem 8, p. 302). Finally, it can be observed simply
by the construction of D that the set of all end points of D is dense in D.

Now, we show that D is chaotic. Let p and g be two distinet points
of D. Let r € pg\{p, q}, where pq means the (only) arc having p and ¢
as its ends. Let U and V be defined as components of the set D\ {r} that
contain p and ¢, respectively. Take arbitrary opensets U' «c Uand V' c V
and suppose, on the contrary, that there is a homeomorphism & of U’
onto V’. First, we notice that KNU' %= @ # KNV’, the set K being dense
in D. Further, observe that h must carry each point of KNU’ into a point
of KNV’, since no point of D is of order greater than 4 and K contains
all points of order 4 of D. Take u e KNU' and put v = h(u) e KNnV'.
Let us assume for definiteness (the argument is similar in the opposite
case) that the set W, which has the point « as its origin is of lower index
than the set W, which has » as its origin. Consider now the arc b, = U’
which is the only arc of four arcs ending at % and disjoint out of » that
contains a sequence of branch points of order 3 converging to ». Assume
that b, = V' has a similar meaning. It is clear that there are a subare
ub,, of ub, and a subarc vb, of vb, such that h(ub,) = vb,. We can take
b,, so close to w and, similarly, b, so close to v that b, and vb, are straight-
-line segments. Any branch point of D on ub, is mapped under k into
a branch point of D on vb,. If W(u) = W,, we see that we have already
reached a contradiction. For W, = FE, and W (v) = W, = H,, ,, which
means that b, contains branch points being limit points of branch points
from the left, while vb, contains no such points. If W(u) = W,,
we fix our attention upon some one branch point of D interior to b, .
Let us denote this point by r, and put 7, = h(r,) € vb,. Consider the
perpendiculars to wb, and vb, at r, and r,, respectively. Denote these
perpendiculars by r,s, and r,s,. Now, since W, = E,,, r, is a limit point
along r,s, of branch points of D which are, in turn, limit points of branch
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points of D from below along r,s,, while r,s, contains no such points
since W(v) = W, = E,, ,,. It is obvious that the argument exempli-
fied above can be extended to apply to the general case where W (u)
=W, and W(v) = W, for n <m and m < n, respectively. It follows
that v = v if u, v € K and h(u) = v. Thus D is chaotiec.

Exactly the same arguments can be applied to show that if » is any
homeomorphism of D onto a subcontinuum of D, then each point of K
must be fixed under k. Since K is dense in D, we conclude from Proposi-
tion 5 that D is strongly rigid. In particular, it is incompressible.

An outline of the above-given construction has been published in [8].

V. FINAL REMARKS

1. The existence of a subset K in a dendrite X such that K has prop-
erties (1) and (2) of Proposition 8 is sufficient but not necessary for the
dendrite X to be incompressible. Indeed, to construct a dendrite which
is incompressible but which does not contain any subset K satisfying
(1) and (2) of Proposition 8 we proceed as follows. Locate the dendrite Y
(see Statement 10) in the plane such that there exists a straight line L
in the plane which has exactly one point, namely an end point ¢ of Y,
in common with Y. Let Y° denote the image of ¥ under the symmetry s
with respect to L. Thus Y nY® = {e} and we see that Y UY? is a dendrite.
It is easy to verify that the only non-trivial homeomorphism of YuUY*
onto a subcontinuum of it is the symmetry s. Thus YuUY? is incompres-
sible. But s leaves only the point e fixed, whence we conclude that if a set
K satisfies (1), then K = {e}; but then (2) is not true.

2. To show that the converse of Proposition 6 does not hold we give
an example of a strongly rigid but not chaotic locally connected curve.
To this end take two copies D’ and D'’ of the dendrite D described in
Statement 13, fix an end point ¢’ of D’, and let ¢’’ be the copy of ¢’ in D".
Next identify ¢’ and ¢’’, respectively, with two different points of the locally
connected and strongly rigid curve P, of Statement 12. The union X
= D'UP,UD" obtained in this way is obviously a locally connected
curve. The two components of X\P,, i.e.,, the open sets D'\{e'} and
D’"\{e"’}, are clearly homeomorphic and, therefore, X is mnot chaotic.
Consider an arbitrary homeomorphism k of X onto a subcontinuum of
itself. Since P, contains a dense set of points of order 6 and there is no
such point in D’ and D", we conclude that h(P,)c P,, whence — P,
being a strongly rigid space — h must be the identity on P,. Thus k(e’)
=é¢', h(e'') = ¢, and, therefore, h(D') =« D' and h(D') < D". But D
is strongly rigid and » must be the identity on both D’ and D". So h is
the identity on the whole X, i.e., X is strongly rigid.
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Added in proof. The following four papers are essentially related to the topic
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Philosophical Society 41 (1945), p. 96-103.
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— Constructions and applications of rigid spaces II, American Journal of

Mathematics 100 (1978), p. 1139-1172.

— Constructions and applications of rigid spaces. III, Canadian Journal of
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