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0. Introduction. In this paper, several results about regular analytic
arcs and curves on Riemann surfaces are established; most of the results
have already becn stated in the literature but the proofs are incomplete.
First, it is shown that if two regular analytic arcs, which are defined on
compact intervals, intersect an infinite number of times, then they are
both subarcs of some regular analytic arc. Next, a classification of real
analytic 1-manifolds which satisfy the second axiom of countability is.
derived. This is used to show that the local and global definitions of a
regular analytic arc are equivalent and that every regular analytic are is.
contained in such a maximal arc. Riemann surface techniques are used
in establishing these results.

1. Preliminaries. In this section we present some of the basic defi-
nitions concerning regular analytic arcs and curves.

Definition 1. Let X be a Riemann surface, and I an interval on
the real axis. A regular analytic arc on X is a function y: I—X such that.
y is analytic at cach point of I and y'(f) # 0 for all tel. Set |y| =
{y(t):tel} and T ={zeC: 2| =1}. A regular amalytic curve on X is
a function y: T— X such that y is analytic at each point of T and 9’ (2) # ¢
for all z € T. Then |y| = {y(2): 2 T}.

The derivative p’(t) is computed in terms of any local coordinate
on X and the interval I may be open, closed, or half-open. To say that ¢
is analytic on I means that there is a region £ o I such that y extends
to an analytic mapping of 2 into X. For this reason it is possible to assume
that I is an open interval, if this is desirable.

Definition 2. Suppose that X is a Riemann surface, and y: I>X
and d:J—X are regular analytic arcs on X. The arc y is called a subarc
of 4 if there is an analytic function f which has a non-vanishing deriva-
tive, maps I into J, and such that y = dof. Two analytic arcs are equi-
valent if each is a subarc of the other.
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Clearly, the function f: I—-J is either strictly incrcasing or strictly
decreasing. Two regular analytic arcs y: I+ X and é: J +~X are equivalent
if and only if there is an analytic function f which has a non-vanishing
derivative, maps I onto J, and is such that y = dof.

Definition 3. Let X be a Riemann surface, and I an interval on
the real axis. A locally reguldr analytic arc on X is a function y: I—-X such
that for each point ¢ € I there are an open interval I, with ¢ € I, and a ho-
meomorphism f; of an open interval J, onto I;, yof, being analytic and
having a non-vanishing derivative. A locally reqular analytic curve on X
is defined analogously; just replace the open interval I, by an open
circular are.

For Jordan arcs and curves, this may be restated as follows. For
each point p € |y| there are a neighborhood U of p and a univalent analyt-
ie function ¢ mapping U into the complex plane C such that g(Un|y|)
< R, the real axis. Clearly, every regular analytic arc or curve is locally
regular. Every locally regular analytic arc y: I—-X has an extension to
an open interval if I itself is not open.

2. Intersection of regular analytic arcs. Let X be a Riemann surface.
We shall show that two regular analytic arcs y, and y, on X, which are
both defined on a compact interval, cannot intersect infinitely many times
unless they are both subarcs of some regular analytic arc y. This is a type
of identity theorem for regular analytic arecs. This result is mentioned
in [1], p. 192-193, with an indication of its proof; however, it is not cited
in a later edition of the same book. The suggested method of proof only
shows that y, and y, must fit together to form a single arc or closed curve.
This same result is established in [8], p. 243-244. In neither instance it is
shown how to obtain a regular analytic parametrization for the union
of the two overlapping ares. One way to obtain such a parametrization
will be given in this section. It should be observed that it can be impossible
to continue analytically either y, or y, to obtain a parametrization of
their union as simple examples show.

LEMMA 1. Let X be a Riemann surface and d any metric on X which
18 compatible with the. topology. Suppose that 2 is a region in the complex
plane C, K is a non-empty compact subset of 2, y: QX is analytic, and
Y'(2) # 0 for all z e Q.

(a) There is an ¢ > 0 such that y ts univalent in the disk

B(zye) ={weC:|z—w|<e} for all ze K.
(b) Given & > 0 there exists 6 > 0 and 1 > 0 such that
v(B(2, 7)) < Bg(y(2), 8) < y(B(2,¢) for any zeK,
where Bi(p, 8) = {ge X:d(p, q) < 8} for any p € X.
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Proof. (a) Since y’'(2) # 0, for each z there is an ¢(2) > 0 such that
v is univalent in B(z, £(2)). Now {B(z, ¢(2)): 2 € K} is an open covering
of the compact set K. If ¢ > 0 is a Lebesgue number for this cover, then
y i8 univalent in B(z, ¢) for all z € K.

(b) First, we demonstrate the existence of 4. Since y is non-constant,
7(B(z, ¢)) is an open set containing y(2). Set

6(2) = % sup {r: Bs(y(2), r) = y(B(2, ¢))} and 6 =inf{d(2): z e K}.

It suffices to show that 6 > 0. Let (z,),., be a sequence in K
with 4(z,)—>d. Since K is compact, we may assume that z,—»>ze K and

2, € B(z, £/2) for all n. Take any r > 0 such that

Bd(?(z)y 7') < V(B(zy 3/2));
we may assume that y(2,) € B;(y(2), r/2) for all n. Then

Bd('}’(zn)r 7'/2) < Bd()’(z)’ r) < V{B(zy 3/2)) < '}’(B(zm 8))7
which yields 4(z,) > r/4 for all n. Hence é>r/4 > 0.

Next, we show how to determine 7. Since y is uniformly continuous
on the compact set K, there is an > 0 such that if 2 € K, then

y (B(z, 1)) < Ba(y(2),8) for all ze K.

THEOREM 1. Let y,:I,—+~X and y,: I,—>X be regular analytic arcs
on a Riemann surface X, where I, and I, are compact intervals on the real
axis. Either |y,|N|y;| 8 finite or else there is a regular analytic arc y on
X such that y, and y, are both subarcs of y.

Proof. Without loss of generality we may assume that I, = I,
=1 =1[0,1]. Set M = |y;INn|y,| and M; =y; (M) (j =1,2). If both
M, and M, are finite sets, then M itself is a finite set. If either M, or M,
is an infinite set, then we will show that y, and y, are subarcs of the same
regular analytic arc. Henceforth, we assume that the set M, is infinite.
By Lemma 1, there is an ¢ > 0 such that both y, and y, are analytic and
univalent in B(¢, ¢) for any ¢ € I. The same lemma then permits us to select
d and 7, 0 <9< d<e¢ such that

1) ¥1(B(ty m) < Ba(y;(8), ) < y4(B(t,¢)) (j =1,2)
for all ¢t € I. Here d is any metric on X which is compatible with the topo-
logy.

The first step is to show that y, and y, have a subarec in common.
Sirice M, is compact and infinite, there is a sequence (t,);_, of distinct
points in M, which converges to some point ¢, € M, and satisfies ¢, € B(t,,¢)
for all n. For each n > 1 there is at least one point 7, € M, with y,(t,)
= y,(t,). The points 7, are all distinet since

Vz(Tm) = 71(tm) '7é 71(tn) = Vz(fn) lf m 9& n.
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By extracting a subsequence of (¢,);.,, if necessary, we may assume
that 7,—»>1,e€ M, and 7, € B(v,,n) for all n. Clearly, ys(z,) = ¥,(%)-
By (1) we have

72(B (70, 7)) = Ba(ya(vo), 8) = Bg(v1(te), 8) < y1(B (%, €))-

Consequently, the function f = [y,|B(,, ¢)] 'oy, is analytic and
univalent in B(zy, ), maps this disk into B(l,, ¢), and y, = y,0f on
B(zy, ). Also f(z,) =1t, €I for all n. The function f(z) is analytic in
B(z,y, ) and agrees with f(z) on the infinite set {r,:n = 0,1, ...} which
accumulates at 7,, so the identity theorem allows us to conclude that
f(r) = f(z). In particular, f is real valued on the real axis, f(r,— %, To+ %)
< (bg—e, to+¢) and f'(7) # 0 since f is univalent. This implies that either
f'> 0 or f < 0 on the interval (v,— 75, 7,-+ 7). We may assume that f' > 0
on this interval; if not, simply replace y,(z) by y.(1 — 7). Thus f is strictly
increasing on (v, —17, to+7). Define b, by [ty, b;) = f([7o, To+7)); then
to < by, <t,+e, and y, and y, share the arc

‘J’z(["’o, To+’7)) = 71([%7 b1))-

Next, we want to continue f analytically along the interval [z, 1]
as far as possible. We can continue f until either [7,, 1] < domain(f)
or [t,, 1] = range(f). The continuation is stopped when we reach one end
of an arc which y, and y, have in common. If

1 € [7g, 7o+ 1)V [t, by),

then we stop. Otherwise, the function [y,(B(by,¢))] "oy, is analytic
and univalent in B(z,+ 7%, ) and coincides with f on (z,, 7o+ 7). This
function provides an analytic continuation of f to the disk B(z,+7%, n);
the extended function will still be denoted by f. Note that f remains real
valued on the real axis. f is now analytic on B(ry, n)UB(7,+17, 1),
y2 = y:cf on the domain of f, and f'> 0 on [z,, 7o+27). Set

f(["o’ To+277)) = [ty bs).

We terminate this process if 1 € [7,, 7o +2%)U [, b,). If not, then we
proceed as before. After a finite number of steps we continue f analytically
to a neighborhood of [z,, 7,+ kn) for some integer k > 1 such that f' > 0
on [7,, 7o+ kn), f maps [zy, 7o+ kn) onto [ty, by), 1 € [vo, To+kn)U [to, by)s
and y, = y,0f on the domain of f.

In a similar fashion, f may be extended analytically to a neighborhood
of (to—Jjn, 7,] for some integer j > 1 such that f' >0 on (r,—jn, ol
J maps (zo—jn, 7,] onto (a;, %], 0 € (vo—jn, To]V(ay, ], and y, = y10f.
Therefore, the function f may analytically be continued to a neighborhood
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of (to—jn, 1o+ kn) so that f'> 0 on the real axis and f maps (z,—j7,

[a, 8] =Inf‘1((a,-, b,c)hI) and [a, b] = f([a, B]).

Both [a, 8] and [a, b] are subintervals of I; either « =0 or a =0,
and either § =1 or b = 1. If [a, f] = I, then y, is a subarc of y, and we
can take y = y,. Similarly, if {a, b] = I, then y, is a subarc of y, and we
may use y = y,. The two remaining possibilities are

i) 0<a<p=10=a<b<l,

(ii) 0 =a<p<l0<a<d=1.

If case (ii) occurs, then by interchanging the roles of y, and y, we
obtain a situation analogous to (i). Consequently, we need only to consider
the case in which f:[a,1]—>[0,5],0<a<1,0<b<1.

Finally, we want to determine a parametrization of a regular analy-
tic arc which contains both y, and y, as subarcs. To accomplish this we
will “blend” two regions by making use of the function f. Let 2, be a Jor-
dan region containing I which is symmetric about the real axis. Suppose
that o, is a symmetric crosscut of 2, such that [a, 1] is contained in one
component w, of 2,—0c,. By selecting 2, and o, appropriately we may
assume that f is analytic and univalent in w,. Then w, = f(w,) is & Jordan
region containing [0, b] which is symmetric about the real axis. By adding
gy, & symmetric Jordan arc which loops around 1, to a part of dw,, we
obtain a Jordan region 2, which contains both I and w,. The function f
maps w,, the right-hand end of 2,, conformally onto w,, the left-hand end
of Q,. The crucial fact is that there exist conformal maps g, and g, of 2,
and ,, respectively, into the unit disk B such that

9:(2,)Vg,(2;) =B,

9:1(2:)Ng.(2;) = g:1(w;) = ga(w;) and  g,|lw, = g,0f.

Moreover, it is possible to select g, and g, to be symmetric about the
real axis. This result can be established in a variety of ways. It can be
demonstrated by the method of blending domains (ﬁee [6], p- 98-99)
or the welding of Riemann surfaces (see [2], p. 118-119). The third possi-
bility is sketched below; the same method will be used in later sections.

Form the disjoint or free union of 2, and 2,. Identify two points if
they correspond under the mapping f. The resulting quotient space W
i3 a Riemann surface; it has a natural conformal structure which makes
the canonical injections p;: 2;,—~W (j =1, 2) into analytic functions. W is
a simply connected Riemann surface which is conformally equivalent
to the unit disk B. Since both 2, and £, are symmetric about the real
axis, W naturally inherits an anticonformal involution. Under the conform-
al mapping g of W onto B we can assume that this involution is carried
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into complex conjugation. Then the functions g; = gop; (j =1, 2) have
the desired properties.
At last we obtain the are y. Clearly,

g1(I)Vgs(I) = [, 8] < (—1,1).
Set

_ |nlg' @) for tegy(D),
Ve (gz-l(t)) for t e g,(I).

v [t, ta]—=X is well defined. Indeed, if ¢ € g,(I)Ng,(I), then

Y2 (02—1“)) = 71of(gz_l(t)) =" (gfl(t))

since g, = g,0f and y, = y,0f. Now, y is a regular analytic arc on X, and
Y1, ¥, are subarcs of y.

3. Classification of real analytic 1-manifolds. In [9], p. 55-57, it is
shown that any connected smooth (C*) 1-manifold without boundary
which satisfies the second axiom of countability is diffeomorphic either
to the open interval (—1,1) or to the unit circle 7 = {z e C: |2] = 1}.
Making use of this fact and the technique employed at the end of Sec-
tion 2 we shall show that every connected real analytic 1-manifold whose
topology has a countable basis is homeomorphic, in the real analytic
sense, either to (—1,1) or to T endowed with the usual real analytic
structure. It is sufficient to show that any real analytic structure on
(—1, 1) or T is equivalent to the usual one.

We begin by recalling some of the basic facts about real analytic
1-manifolds. A real analytic 1-manifold is a pair (Y, s#), where Y is
a one-dimensional manifold and 5 is a maximal real analytic atlas on Y.
Such an atlas # = (h,),.4 consists of real analytically compatible charts
h,, where each h, is a homeomorphism of an open set U, < Y onto an
open set h,(U,) = R, the real line. 5 is called the real analytic structure
on Y. If 5, is any real analytic atlas for a one-dimensional manifold Y,
then it uniquely determines a maximal real analytic atlas # o s, for
Y, and ##, is called a basis for the real analytic structure /# on Y. For
example, the usual real analytic structure on (—1, 1) has s#, = (k), where
h is the identity function as a basis.

Let # = (h,),.4 be any real analytic structure on (—1,1), and let
M = {(—1, 1), #)> be the associated real analytic 1-manifold. We want
to show that M is equivalent to (—1, 1) with the usual real analytic struec-
ture. Determine open intervals I, = (a,, b,) (» =0, +1, £+2,...) such
that each closed interval [a,, b,] is contained in the domain of some &, € #,

y(t)

UINZ(_171) and r—1<an<bn—1<a”+1<bn<l
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for all n. The functions (k,);>°_., form a basis for #. Observe that I,, NI,
=@ if \/m—n|> 2. Set h,(I,) = (a,, f,); We may assume that h,(a,) = a,
and h,(b,) = B,. Each h, i8 increasing on [a,, b,] and

fn = hn+lo h;l: [hn(a’n+1)’ ﬁn]_>[an+17 hn+1(bn)]

is a real analytic homeomorphism with f, > 0. Thus f, extends to a con-
formal mapping of a symmetric Jordan region containing [h,(a,.,), 8,1}
onto & symmetric Jordan region containing [a, ., %,.,(b,)]. Thus for each
closed interval [a,, §,] we obtain two Jordan regions, one w, containing
[@an, bn(b,_,)] and the other o containing [k, (a,.,), B,]. We may assume
that the closures of these two regions are disjoint. By making use of
a Jordan arc in the upper half plane which connects these two Jordan
curves together with its reflection in the real axis, we obtain a Jordan
region Q, o [a,, B,] such that o, and o, are both subregions of 2, and
each is determined by a symmetric crosscut. Then f, maps o, , the right-
hand end of 2,, conformally onto w, ,,, the left-hand end of 2, ., for all ».

We now construct a Riemann surface as in Section 2. Take the dis-
joint union of all the regions 2, and identify two points if they correspond
under some f,. The resulting quotient space W is a Riemann surface with
a natural conformal structure which makes the canonical injections
P, 82,— W into analytic functions. W is simply connected and conformally
equivalent to the unit disk B. Also, W has a natural anticonformal
involution; we may assume that the conformal mapping g of W onto B
converts this involution into complex conjugation. Put g,= gop,; then g,
is analytic and univalent in Q,,g, >0 on [a,, 8,],

+00
U gn((an! ﬂn)) =(-—1,1) and g, = gn+lofn on w:'

Define ¢: M—(—1,1) by ¢(t) = g,(h,(¢)) if ¢eI,. The map ¢ is
well defined, real analytic, one-to-one and onto. In other words, ¢ is a real
analytic homeomorphism of M onto (—1, 1) with the usual real analytic
strueture. This result could also be established by the method of blending
an infinite number of domains (see [6], p. 77-80).

The equivalence of any two real analytic structures on the unit circle
T can be established in a similar manner. We give a brief indication of
the proof and omit all details.

Let # = (h,),.4 Do areal analytic structure on 7' and set M = (T, 5#).
Since T' is compact, we can use a finite number of circular arcs J, to cover
T, the closure of each J, being contained in the domain of some h, € 5.
We may assume that the J, overlap analogous to the I, and that (J,))_,
i8 the set of arcs ordered clockwise around the circle. We e¢an obtain a Jor-
dan region Q, symmetric about the unit circle which contains the closure
of J, and a conformal map f, = h, ,0h,’ of the right-hand end of J,
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-onto the left-hand end of J,,,. “Right-hand” and “left-hand” are as seen
from the center of the circle; we take J,,; = J,.for convenience. We
now form a Riemann surface W from the regions 2, and the maps f,.
‘The surface W is conformally equivalent to a doubly connected region
in the complex plane which contains T and is symmetric about 7. In
this manner we obtain a real analytic homeomorphism of M onto 7. Let us
summarize our results in a theorem.

THEOREM 2. Let M be a connected real analytic 1-manifold which
satisfies the second axiom of countability. If M is compact, then M is real
analytically equivalent to the unit circle T with the usual real analytic structure.
If M is mon-compact, then M 18 real analytically equivalent to the open
interval (—1, 1) with the usual real analytic structure.

4. Locally regular analytic ares and curves. In this section we show
that the local and global definitions of regular analytic ares and curves
are equivalent. It is enough to show that the local definition implies the
global one. In [3], p. 376, Satz 50, this result is established for regular
analytic Jordan ares y: I—-X, where I is a compact interval, by making
use of the Riemann Mapping Theorem. This same result is mentioned in
{7], p. 228-229, but the proof contains an error. We shall establish the
result in the general case.

Let y: I—-X be a locally regular analytic arc on a Riemann surface
X, where I is an open interval on the real axis. For each ¢ € I there are
an open interval I, = I with ¢ € I, and a homeomorphism f; of an open
interval J, onto I, such that yof, is analytic and has a non-vanishing
derivative. For each t €I write h, = f;': I;—~J,; then (k) ; i8 a basis
for a real analytic structure s# on I. By Theorem 2 there is a real analytic
homeomorphism ¢ of (—1, 1) with the usual real analytic structure onto
{I, #). Then é = yogp i8 a regular analytic arc; in other words, we can
reparametrize y so that it becomes a regular analytic arc.

In the same manner it can be shown that every locally regular analy-
tic curve can be reparametrized as a regular analytic curve.

5. Maximal regular analytic arcs. Let y: I-X be a regular analytic
arc on & Riemann surface X; without loss of generality we may assume
that I is an open interval. We will show that y is contained in & maximal
regular analytic are which is uniquely determined up to equivalence of
regular analytic arcs. The method of proof is similar to that employed
by Bochner [4] in demonstrating the existence of maximal Riemann sur-
faces.

Let I' = (y,)qex be the family of all regular analytic ares y,: I,»X
which contain y as a subarc; I, denotes an open interval. With each
a € A there is an associated analytic function f,: I +I, with non-vanishing
derivative and such that y = y,0f,. We define a partial ordering on the
set I' as follows: We write y, < y; if y, i8 a subare of y, and the function
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fap: I,— I, which exhibits y, a8 a subarc of y, (that is, y, = y;0f,s) satisfies
s = fapOfa- It i8 elementary to verify that this defines a partial ordering
on the set I' and that fz0f, = fos if va < ¥5 < ¥s.

Zorn’s Lemma will be used to show that I" contains maximal elcinents;
we will prove that every chain in I" has an upper bound.

Let (y,)qep Pe & chain in I'. Let I® be the direct limit of the topologic-
al spaces (I,),.p With respect to the functions f,;. The direct limit I® is
just the free union of the open intervals (I,),.p with two points ¢, € I, and
i; € I, identified if y, < y; and t; = f,5(t,). It is straightforward to verify
that I* is a connected non-compact one-dimensional manifold. There is
a natural real analytic structure induced on I which makes each of the
canonical injections p,: I,—~I* a real analytic function. Thus I* is a con-
nected real analytic manifold. The function §: I® X,

6 (.pa (ta)) = Ya (tu) H

is well defined and real analytic. From [5], p. 116, Corollary 2, it follows
that the topology for I® has a countable base. By Theorem 2, we know
that I® is real analytically equivalent to (—1, 1) with the usual real analy-
tic structure. Hence we may simply assume that I* is (—1, 1) with the
usual real analytic structure. Then 4: (—1,1)—X is a regular analytic
arc which contains y as a subarc and y, < ¢ for all a € B. Thus we may
conclude that I' contains maximal elements.

Suppose that 6,: I,—~X and J,: I,—>X are both maximal elements
in I'. Each of these arcs has y as a subarc. This implies that there is an
_analytic function f, defined on (a,, #,) < J,, mapping this interval into
J, 80 that

81(ay, B1) = 0f and f #0 on (ap).

Extend f analytically to the largest subinterval of J, as possible
80 that f* # 0 on this subinterval. If domain(f) = J,, then 4, is a subarc
of 3,. Since 4, is maximal, this means that §, and 4, are equivalent arcs.
If range(f) = J,, then §, i8 & subarc of 4, and we obtain the same conclu-
sion. Otherwise, use the function f as in Section 2 to piece J, and 3, together
to obtain a regular analytic arc 4 containing both 4, and 3, as subarcs.
Since 4; (j = 1, 2) is maximal, we find that J; and J are equivalent regu-
lar analytic arcs. Consequently, 8, and 3, are equivalent.
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