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0. Introduction. The present paper concerns Riemannian manifolds
with metric of index one. Such a manifold (M, g) always admits a 1-dimen-
sional differentiable distribution d which is timelike in the sense that
g(Y, Y)< 0 for each non-zero vector Y € d. In this paper the distribu-
tion d is, moreover, assumed to be closed, i.e. spanned locally by the gra-
dient of a function. We also admit that each maximal integral curve of d
is a complete submanifold of .

A submanifold M of M is called spacelike if its co-dimension is one
and ¢(Y, Y) > 0 for any non-zero vector Y tangent to M. In Section 2
we consider certain tensor fields v, w, v and a family of operators d(t, p)
which are determined in a natural manner by d. In Section 3 it is shown,
in particular, that, under some suitable conditions for M, d and the quan-
tities listed above, for any compact spacelike submanifold M of M, either M
is diffeomorphic to R x M or M is the space of a bundle with fibre M over §*
(Theorem 1). Theorem 2 states that any two compact spacelike submani-
folds of M are diffeomorphic provided that M is non-compact and the
norms of the operators d(¢, p) are uniformly bounded. Proposition 4 asserts
that if M is flat and w = 0, then each spacelike submanifold of M admits
a positive-definite metric with flat Riemannian connection.

1. Preliminaries. By a manifold we always mean a C* paracompact,
connected Hausdorff manifold, ¥ = oo, w. In the sequel, (M, g) will de-
note an (n 4 1)-dimensional Riemannian manifold # with a C* metric ¢
of index one. A vector Y e T M iz called timelike (respectively, spacelike)
if g(¥, Y) < 0 (respectively, g(¥, ¥) > 0). By a time orientation at p ¢ M
we mean a connected component of the set of timelike vectors at p. The
manifold (M, g) i8 called isochronous or time-orientable if it admits a con-
tinuous field of time orientations. If such a field is chosen, (M, g) is said
to be time oriented.

A 1-dimensional distribution d on M is called closed if it is spanned
locally by a gradient, i.e. if for each p € M there exist a neighbourhood W
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of p and a C* function f on W such that 0 # df e d everywhere in W.
Clearly, the orthogonal complement d' of any 1-dimensional timelike
distribution d on M is an n-dimensional spacelike distribution on M.

We adopt the following convention for indices: a, 8, ... =0, 1,...,n,
and ¢,§,... =1,...,n. In the sequel we shall identify vector fields on M
with 1-forms by means of the metric g, so that exterior differentiation
can be applied to vector fields.

LEMMA 1. Let d be a 1-dimensional timelike C* distribution on M.
Then d is closed if and only if d* is involutive.

Proof. Suppose that d is closed. For p € M let f be a function on
a neighbourhood of p such that df spans d. The submanifold defined by
f = f(p) is orthogonal to df, so it is an integral manifold of d through p.

Now let d' be involutive and let p € M. By Theorem 1 of [1], p. 90,
we can find a coordinate system z°, ..., " at p such that 2°(p) = 0 and the
equation z° = ¢ defines an integral manifold of d- whenever |£| is suffi-
ciently small. Since dx° is orthogonal to the submanifolds #° = g we
have 0 # dx° € d, which completes the proof.

Therefore, in the case n = 1, each 1-dimensional timelike C* distri-
bution is closed, since its 1-dimensional orthogonal complement is in-
volutive.

LeMMA 2. Suppose that (M, g) is time oriented and d is a closed time-
like distribution on M. Then for each p € M there exists a coordinate system
(W,9) =(W,2°%...,2") at p such that

1)  e(p) =0,
(2) (W) ={¥"...,y") l¥*| < a} for some a > 0,
(3)  the equation x° = & defines an integral manifold of d* whenever |£| < a,
(4)  the system of equations &' = & defines an integral curve of d whenever
1€ < a,

(5)  the field 0/0x° is coherent with the time orientation.

Proof. Using Theorem 1 of [1], p. 90, choose coordinate systems
Y% ..., y"and 2?, ..., 2" at p such that y*(p) = 2°(p)' = 0 and the equations
y° = £° (respectively, 2* = &) define integral manifolds of d- (respective-
ly, integral curves of d) whenever |£°| are sufficiently small. We have

dy®, 0/02° € d, since dy° is orthogonal to each submanifold ¥° = £° and
0/02° is tangent to each curve z° = £. Thus

0 0 ay°
o _—V — g,0 —
O;ég(dy,azo) % (Oz") az°’
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hence the transformation (2°,...,2")— (y° 2%,...,2") has the non-zero
Jacobi determinant. This shows that x°, ..., 2", where 2° = 9°, 2’ = &,
is a coordinate system at p. Conditions (1)-(4) are obvious; to obtain (5) it
is sufficient to replace z° by — 29 if necessary. This completes the proof.

LEMMA 3. Under the assumptions of Lemma 2, the atlas consisting of
coordinate systems with properties (1)-(5) satisfies the relations

(6) 90<<0, g =9: =0,
(7) Ag’ = Ag' =0,
(8) 47 >0,

where x°, ..., x" and x°, ..., 2" are coordinate systems of the above type
and A% = dx* |0x".

. Conversely, given an atlas on M satisfying (6)-(8), the base fields 0/0x°,
determined by its charts, define a closed timelike distribution and a time
orientation on M.

Proof. We have 9/0x° € d and 9/0a° € d*, which yields (6). Clearly,
dz* e d*, 8o

. 0 ox* .
) 0=g(da},awo)=5—m-;= ;.
Similarly, A% = 0. The formula
9 I
@ o~ o =g

implies (8) in virtue of (5).
Now let an atlas satisfy (6)-(8). Then our assertion follows easily
from (9). This completes the proof.

2. The tensor fields v, w and u. In the sequel, the triple (i, g, d)
is assumed to satisfy the following two conditions:

(10) (M,g) is a time oriented (n+ 1)-dimensional C* Riemannian
manifold (¥ = oo, w) with metric g of index one.

(11) dis a 1-dimensional closed timelike C* distribution on i, whose
maximal integral curves are complete, i.e. each of them is the
image set of a C* mapping #: R — M such that g(&,, #,) = —1.

For p € M, N(p) will denote the maximal integral manifold of the
involutive distribution d* through p.

By an admissible neighbourhood (W,¢p) = (W, 2°, ,2") of peM
we shall mean a coordinate system satisfying (1)-(5). In terms of such
a coordinate system we shall use the notation N, for the integral manifold
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of d+ defined by z° = £ Clearly, N, is an open submanifold of
N(g~'(&,0,...,0) (see [1], p. 88-95). _

Let X be the unique unit vector field on M which is coherent with
the time orientation and spans d. In view of (11), X is complete, 80 its
flow (¢,) is defined for each ¢ € R.

Denoting by =: T,M — d} the orthogonal projection, we define
a linear isomorphism d(t, p): d} — d}, where ¢ = ¢,p, by

d(t,p)Y = =(p)s Y.
We have (p)« Y —d(t,p) Y €d, so

A3 (Psp)e Y —(ps)ed(t,p) Y.
Hence

0 = 7(@sithe Y —7(@,)ed(t, p) Y = d(8+1,p) Y —d(s, pp)d(¢, p) Y.

Thus we obtain

(12) d(s+t,p) = d(s, gp)od(t, p)
and, consequently,
(13) (@(t, p)™* = d(—t, ).

LEMMA 4. Suppose that (W, @) 18 an admissible neighbourhood,p, g W,
and

¢(p) = (a,2t,...,2"), ¢@(q = (b,a,...,2").

Then q = ¢;p, where

b
t = f}/|goo(w,w1, ceey 2| d2.

Proof. Let, e.g., a <b, so t > 0. Clearly, ¢,p is determined uniquely
by the following condition: there exists a C* curve z of length ¢, with the
origin at p and the end at ¢,p, whose tangent vectors are vectors of X
multiplied by positive scalars. Using the curve 2: [a, b] - M, given by

2(z) = ‘P—l'(w7 @, ..., 2"%),

we conclude that ¢,p = 2(b) = ¢, as desired.

An n-dimensional submanifold M of M is called spacelike if so is
each non-zero vector tangent to M.

LEMMA 5. Suppose that M is a spacelike submanifold of M, p € M,
heR,a<ce<b, andx: [a,b] > M is a continuous curve such that z(c) = p.
Then
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(i) There exist a neighbourhood U of p in M and a C* function f on U
such that '

(14)  f(p) =1, and all the points g, q lie in N(p, p).

(ii) There exists at most one continuous function f on M which satis-
fies (14) and is of class C*. If M is an integral manifold of dt, then the
mapping F: M — N(p, D), given by F(q) = psq ¢, satisfies the condition
F,, = d(f(a),q) for ge M. .

(iii) There exist a meighbourhood J of ¢ in [a,b] and a continuous
function f on J such that

(15)  f(e) = t, and the curve z(t) = gy, x(t) lies in N (@, p).

(iv) There exists at most one continuous function f on [a,b] which
satisfies (15). If x is differentiable, then so is f. In this case, if moreover M is
an integral manifold of d*, then

&(t) = d(f(@t), =) #(t) for te[a,b].

Proof. Choose an admissible neighbourhood (W, 2°,...,2") of ¢, p
and neighbourhoods V' of 7, in R and U’ of p in M such that ;e W
whenever te V' and qe U’. The function Q: V' x U’ — R defined by
Q(t, q) = 2°(¢,q) satisfies the conditions

0 d
@, p) =0 and %(toyp) = — %@, p)

i = g(dz® X) # 0.

t=ty

By the implicit function theorem we obtain the desired existence
and uniqueness statements.
Now suppose that M is an integral manifold of dt. Let

Y =9,eT M.
We have
. d
F.Y = 25 VY (s) = (ppas Y +df(Y) X,
8=0
whence

This completes the proof.
From Lemmas 4 and 5 we obtain easily

LeEMMA 6. Let (W,¢) = (W,2% ...,2") be an admissible neighbour-
hood of p. If |a| is sufficiently small and

a
to = [ Vign(, 0, ..., 0)|dz ,
J
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then the function f on N,, where

1@ = [ Vlgw(z, 2*(0); ---, " (9))|dz

satisfies (14) and the mapping F': N, — N,, given by
F(‘P—I(O’-’vl’ "-’wn)) =9 (a,2,...,5"), e F(q) = Y194

satisfies the relation F, , = d(ty, p).

Using admissible coordinates we define, on M, tensor fields v, w and u
of type (0, 1), (0, 2) and (0, 1), respectively:

0:900

(16) % =0, v =- % =0V,
0094
(17) Wop = tWy; = Wiy = 0, Wy =
00 (17 10 ’ i 2‘/lg—o;|—7

aO’Da
(18) Uy =

V |9l

The tensor transformation rule for (16), (17) and (18) follows easily

from (7).

We have clearly d,v; —0;v; = 0 and 9,v, = 0, 80 we conclude imme-
diately

(19) u = 0 identically if and only if dv = 0 identically.

Now we are going to characterize v and w in terms of the operators
a(t, p):

LEMMA 7. The following conditions are equivalent:

(i) v = 0 identically on M;

(i) (p)e Y = d(t, p)Y for Y € dy, i.e. each @ leaves the distribution d*
invariant.

Proof. Let v = 0, so that 9,940 = 0. In the notation of Lemma 6,
f is constant and F = ¢, . Hence for each p € M there exists 6 > 0 such
that (¢)ed, = d,, where ¢ = ¢,p, whenever [{| < d. It i8 now easy to
conclude (ii) using (12) and (13).

Now suppose that (ii) is satisfied. As in Lemma 6,

¢p: No—>N, and F: N,—>N,,

80, by (ii) of Lemma 5, f(q) = ?, for g € N,. The function

Qa,at,...,a") = [ Vigw(=,a, ..., a") do
0
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depends only on a, whence
0; l/Igool = 0,0,9 =0,

which completes the proof.

LEMMA 8. The following conditions are equivalent:

(i) w = 0 identically on M;

(i) d(t, p) is an isomeiry for each t € R and p € M.

Proof. Let w = 0, 8o that d,g9; = 0. In the notation of Lemma 6,
F: Ny — N, is an isometry, since g,; = g,(«, ..., 2") define the induced
metric on both N, and N,. Hence for each p € M there exists 6 > 0 such
that d(¢, p) is an isometry whenever [{| << . From (12) and (13) we can
easily conclude (ii).

Now.let (ii) be satisfied. In terms of Lemma 6, F': N, — N, is an iso-
metry, 8o

9i(0, 2%, ..., 2") = g;(a, ..., 2").

Hence 0,9,; = 0 which completes the proof.

By § we denote the positive-definite metric on M which coincides
with —g on d, with ¢ on d* and such that d and d* are g-orthogonal.
In admissible coordinates we have clearly Jo = —gw, Fo: = Gio = 0,
J;; = 9;;- Thus both g and g induce the same positive-definite metric on
each integral manifold of d*. We use the symbols V, V and I, I';, for
the Riemannian connections and Christoffel symbols of (M, g) and (M, 3),
respectively. For any ¥ € THM we have VX, Vy X e dt, since §(X, X)
= —g(X,X) =1.

In admissible coordinates the components.of X are

[
i)

It is easy to verify that
(20) v = 0 identically if and only if dX = 0 identically.

Using the obvious relations

(21) T = =Tt = —gng™o
and
1 1
Vlgool gﬂcrjo = l/—— Fire r;o Wij y
we obtain
(22) VX =v = —VyxX, where v = g%,

(23) g(¥,V,X) =w(Y,Z) = §(Y, V;X) for Y,Zed*.
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For any integral manifold N of d', X is a unit normal vector field
on N in both metrics ¢ and §. Hence, for each p € M, w, restricted to
T, N (p) coincides in view of (23) with the second fundamental form of N (p)
at p in both Riemannian manifolds (M, g) and (M, §).

Thus from (22) and (23) we conclude

LeEMMA 9. (i) v = 0 identically if and only if each integral curve of X
is a geodesic in (M, g) (or in (M, §)).

(ii) w = 0 identically if and only if each integral manifold of d‘ is
totally geodesic in (M, g) (or in (M, §)).

Example. Let (M™, g") and (M, g') be complete Riemannian mani-
folds of dimensions n and 1 with metrics of indices 0 and 1, respectively.
Set (M,g) = (M", g")x (M, g"). The formula

d(p.Q) = T(p.q)({p} xM') for (p,q)e M

defines a closed timelike distribution d on M. It is easy to see that in this
case the fields », w and » vanish identically. Both Riemannian manifolds
(M, g) and (M, 3) = (M™, g") x (M', —g') are complete.

3. Certain connections between the tensor fields v, w, » and the topology
of M. The construction presented in this section gives a useful tool to
prove some statements about the topology of M.

Let M be a spacelike submanifold of M. It is easy to see that the

mapping
® =D, RxM—>M,

given by @(t, p) = ¢p, i8 locally diffeomorphic and its image set 4,
= @(R x M) is open. By @ = &* ¢ we shall denote the Riemannian metric
on R x M, induced from g by @. In an obvious manner we define the time-
like distribution D = D,;, = ®*d on R x M induced from d, and its G-ortho-
gonal complement D+ = Dj; = ®*d*. Clearly, D is closed and the flow
(L,;) of the unit vector field ®*X on R x M, which spans D, is given by
L(s, p) = (t+s, p). Therefore, the triple (R xM,@, D) satisfies (10)
and (11), hence all the statements of the preceding sections are valid
for it. By P(¢, p) we shall denote the maximal integral manifold of D+
through (¢, p). Using Lemma 2 of [4], p. 86, it is easy to see that

(24) for a piecewise C* curve z in R x M, z lies in an integral manifold
of D' if and only if doz lies in an integral manifold of d*.

Hence

(25) for any (t,p) e Rx M, ®(P(t,p)) = N(P(¢, p)) and the mapping
@: P(t,p) > N(D(t, p)) is a local isometry.
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The natural projections of R x M onto M and onto R will be de-
noted by p,, and by pgr, respectively.

We can define a new positive-definite metric A = h,; on M by
(26) W(Y,Z) =g(xY,nZ), where n: T,M —d} is the orthogonal

projection for p € M.

By |ld(t, p)l| we shall denote the norm of the operator d(t, p) of the
Hilbert space df into df, ¢ = ¢,p. In view of (13) and Lemmsa 8, the
condition w = 0 is equivalent to |d(f, p)|| < 1 for any { € R and p € M.

A spacelike submanifold M of M is said to be covered by d* if, for
any maximal integral manifold P of Dj;, the mapping p,: P— M is
2 covering.

PrOPOSITION 1. Assume that one of the following conditions is satisfied:

(i) v = 0 identically (e.g., v = 0);

(ii) ||d(t, )|l < C for some C = 0 and for eachte R, p € M (e.g., w = 0)
and M is complete in §.

Then each spacelike submanifold M of M is covered by d-.

We prove first the following

LEMMA 10. The assumptions of Proposition 1 being satisfied, suppose
that M is a spacelike submanifold of M, p e M, and y: [a, b] — P(ty, p)
is a curve of class C* such that y(a) = (&, p). Set y(s) = (L(s), ©(8)). Then
for each t € R there exists a unique C* function f,: [a,b] - R such that
fi(a) =1t and
(27)  the curve s > (f;(8), (8)) lies entirely in an integral manifold of Dy.

Proof. If we show the existence and continuity of f;, then from (iv)
of Lemma 5, applied to the triple (R x M, &, D), it will follow that f,
is unique, of class C* and f; (s) < f,,(s) whenever ¢, < ,.

(i) Suppose that v = 0. Set

8

fi(s8) =f(t,8) = L(8)+ (t—1,) €™,  where R(s,) = f v(:i;(s))ds.

For each t € R, fi(a) =t. Let E be the set of all { € R such that f,
satisfies (27). Clearly, ¢, € E and

d

5= 0 {t]o( X, 5 o7t 9, 00)) = of
8 <[a,b] ds J

is closed in R. We are going to show that E is open. Let r € E. Using the

compactness of [a, b], it is sufficient to prove

(28) For any s, € [a, b] there exist 4 > 0 and a connected neighbour-
hood J of s, in [a, b] such that f, restricted to J satisfies (27) when-
ever [t—r| << d.
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Let 2(s) = ®?(f,(s), z(s)). In view of (19) we may choose an admis-
sible neighbourhood (W, ¢) = (W, 22, ..., 2") of 2(s,) and a C* function F
on W such that F(2(s,)) = 0 and dF = v. Thus

0F =0 and 0,F = d,l0gV gel ,
SO

logV\ge (2, ..., %) = F(x!, ..., 2")+Q(x°) -
for some function ¢. Hence
Q(x) = logl/lgoo(w’ 0,...,0),
Vgoo (2, ..., @")| = exp[F(a, ..., a")]exp[Q (x)].

Now let J be a connected neighbourhood of s, in [a, b] such that
2(J) = W. We have F(2(s;))= R(s;) — R(s,) for s, € J. In fact, let, e.g.,
8o < 8; and A = [8o, 8;] % [0,1]. Define K: A — M by

K (s, 1) = O(tf.(s), 2(s)).

Using the Stokes formula and the fact that v is orthogonal to d, we
obtain

(29)

8 8
0= [E*dv = [K*v = [o(@(s))ds— [ v(2(s))ds.
4 04 8o 8o
Thus
8) ’ 1

R(8;)—R(sy) = f v(@(s)ds = [v(é(s))ds = [ aF(2(s))ds = F(a(s,)),
8 8¢ L))
as desired. ¢
If |c| is sufficiently small, then the curve
J38>2,(8) = qf‘(c, w1(2(8))y ..., a;”(z(s)))
lies in an integral manifold of d'. In view of Lemma 4,

zc('g) = ‘pt(c,s)z(s) = ¢(fr('g) +t(07 8), (8(8)),
where

t(c,s) = fl/lgoo(w, xt(2(3)), ..., a;"(z(s)))' dz,
8o, by (29),
t(c, s) = exp[F(2(s))] [ exp[@(#)1dw = exp[— R(s,)]t(c, s,) exp[R(s)].

Therefore

fr(8)+t(c, 8) = f(r+exp[—R(s,)]i(c, 8,), 3).
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If |t —r| is sufficiently small, then
t—r = exp[—R(s)]t(¢c,s,) for some c.

Thus (28) follows in view of (24).

(ii) Suppose that M is complete in g and ||d(f, p)l| < C for all te R
and p € M. Denote by E the set of all ¢t € R such that the desired contin-
uous function f; exists. Clearly, ¢, € B, since we may set f, = L. For
r € E, let s, be the supremum of those s, € [a, b] for which

(30)  there exist § > 0 and a differentiable function
(7‘— 6’ r+ 6) X [a'7 81]9 (ty 3) "’f(ty 8) :ft(s) €ER
such that f,(a) = ¢t and f, satisfies (27) whenever [t —7| < d.

Set 2(8) = ( f,(s),w(s)) and choose an admissible neighbourhood
(W,9) =(W,2%...,2") of 2(s,) in RxM. We have

2([a,8,]) =« W and (r—6,r+d8)x{z(a)}c W
for some s, > a and 6 > 0.
If |t —7r| < 6, then the curve z,: [a, $,] > R X M, given by
2(s) = 97 (a0 (t, 2(a)), 2 (2(5)), ..., a"(2(s))),
lies on an integral manifold of D+ and
Pz (s)) = pM{cp“(ﬂ(z(s)), ceey X (z(s)))) = pul2(s) = x(s).

By setting f;(s) = pr(%(s)) we show that s, > s, > a, since

Ji(a) = PR(‘P_l(mo(t, z(a)), ..., " (t, w(a)))) = 1.

Now choose a < 8, < 8; < 8y < 83 < b such that z([s,, 8,]) =« W, and
find a 6 > 0 and a function f for s, as in (30). Let 6, € (0, 6) be such that
(fi(s2), z(s;)) € W if [t —r| < d,. For such %, the curve z: [s,, 851 > R x M,
given by

2(8) = 7} (2°(£(82), @(,)), @ (2(5), ..., 2" (2(9))),

lies on an integral manifold of D:. We have

pu(%(s) = pu(2(s) =2(s) and pr(2(8:) = Pr(fi(s2), 2(s2) = fi(s2).

Therefore, pgoz, defines a C* extension of f, from [a, s,] to [a, 8,]
for |t—r| < 6,, which yields s, > s;. Thus s, = b, since, otherwise, we
could choose s; > 8,. Moreover, b satisfies (30), i.e., (r—d,r+3d) <« E
for some 6 > 0. Hence F is open in R. Let (7, r) be the maximal interval
in E, containing {,.
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Suppose that r < oo. Using (iii) of Lemma 5, choose the maximal
8, € (a, b] such that the desired function. f, can be defined on [a, s,). Let

2(8) = d)(frj(s), m(s))r
g0 that

2(8) = B(—f,(s),2(8)) and @(8) = (p_z)e4(8) —Ffr(8) X.
Hence nd(s) = d(—f,(s), 2(s))£(s), s0, by (13),
2(8) = d(fu(s), x(s))mx(s) and  §(4(s),4(s)) < C*h(2(s), 2 (s))

in view of our assumption. The k-length of x is finite and, consequently,
80 is the g-length of z. Since M is complete in §, it follows that the limit

q = lim 2(8)
8—>8¢

exists. Let (W, ¢) = (W, 2°, ..., 2") be an admissible neighbourhood of q.
For s, € [a, s,), in view of (30) we obtain

2(81) = 1im ¢(ﬁ(31)7 $(81)).

Hence we may choose s; < s, and r, < r such that
2([81,8) =« W and  D(fi(s),x(s))) e W

whenever { € [7,, r]. The curve §: [s,, 8,] =~ M, given by

y(8) = q’_l(‘vo(@(frl (81)5 m(s1)))7 xt (z(s))7 ceey a}"(z(s))),
lies in an integral manifold of d'. In view of Lemma 4,

7(8) = @yg2(8),

where [8,,8,]2 8+ 1t(s) e R is .a confinuous function. Uging the fact
that the function

(7, 7) 2 1 = fy(81) =1, (81)

is monotone increasing, we conclude that f, (8;)—f,(8:) = t(s,). Both
curves @ (¢(s), 2(s)) and

q}(frl (8)7 w(s)) = ¢(fr1 (8) '—fr(s)7 z(s))

lie in an integral manifold of d*, hence f, (8)—f,(s) = t(s) for & € [8,,8,)

in view of (iv) of Lemma 5. Therefore, the limit lim f,(8) exists. From (iii)
88

of Lemma 5 we conclude easily that s, = b. Thus (r—d,r+ 8) < E for
some 6> 0, which contradicts our choice of (7,r). Hence r = oo and,
similarly, 7 = — oo, 80 that ¥ = R, which completes the proof of Lemma 10.
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Proof of Proposition 1. We have

(31) Each p € M has a connected neighbourhood U in M such that
p3f (U) i8 a disjoint union of integral manifolds of D+ each of
which is mapped diffeomorphically by p,, onto U.

In fact, let B"(r) denote the closed ball of centre 0 and radius r in R".
We may choose a neighbourhood V of (0, p) in P(0, p) and a diffeomor-
phism H: B"(1)— V such that H(0) = (0, p), and p,: V—U is a diffeo-
morphism for some neighbourhood U of p in M. For ze 8*! = 9B"(1)
we define a curve v,: [0,1] — P(0, p) by v,(8) = H(sz), so that y,(0)
= (0, p). Set ©, = py0v,. Applying Lemma 10 to ¥y = y,, [a, db] = [0, 1]
and t, = 0, we obtain a family of continuous functions

fé: 0,11 R, teR,zeS"'.
For t € R define F;: U - R XM by

Ft ‘.’DZ(S)) = (ftz(s)y a’z(s))

and set V, = F,(U). If F,(q) = F;(q.), then ¢ = ¢, and we may write
q = ¢1 = %,(8), 80 f{(8) = f; (8). By (iv) of Lemma 5, f’ = fy,, hence t = 1,.
Therefore, the sets V, are pairwise disjoint. It is easy to see that py: V, - U
is a one-one and onto map. Now, let

(t, ) epu (U) =RxU and q =x,(8).

Define y: [0, 8,] = V by y(s) = y,(8,—8) and set & = py0y, so that
x(8) = x,(8,—8), £(0) =g, x(s;) = p. Let f, be the function on [0, s,]
determined for y as in Lemma 10 and set ¢, = f;(s,). The curve z: [0, ]
— R x M, given by z(s) = (f,(s), #(8)), lies in an integral manifold of D*,
and z(s,) = (%, p). It follows from (iv) of Lemma 5 that

2(8) = (f£ (s0—8), %,(3,—8)).
Hence
(t;9) = Z(0) = (fZ (50), 9) = Fy ()
which shows that
P (U) =U V..

teR

Now it is sufficient to prove that each V, is an integral manifold of D*.
Let r, be the supremum of those r € [0, 1] for which F, is differentiable
on pM(H (B"(r))). From (i) and (iv) of Lemms 5 it follows easily that
r, > 0. For any 2z, e "' choose a neighbourhood W of z,in 8" !, and
a neighbourhood J of 7, in (0, 1] such that on the neighbourhood

U = {acz(s) lze W,sed}
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of z, (r,) in U there exists a C* function f which satisfies (14) with p re-
placed by z, (1), t, by f;2(r0), and @, by L,. By (iv) of Lemma 5 this function
coincides with F, . Therefore, Fy is differentiable on a mneighbourhood
of py(H (B"(,))) in U. Now it follows easily that 7, = 1.

Each F, is differentiable and maps U into an integral manifold of D*.
It is now easy to see that F, is an embedding, so V, is an integral manifold
of D+, which proves (31).

Now we are in a position to complete the proof of Proposition 1.
Suppose that p € M and that P is a maximal integral manifold of D-'.
Let a connected neighbourhood U of p in M and its decomposition

U= UV,
geRx U
into integral manifolds V, of D! with ¢ € ¥V, be chosen as in (31). Clearly,
for q € p3; (U)NP we have

Vy = oy (U)NP,

which shows that p3/ (U)NP is a disjoint union of open subsets of P each,
of which is mapped by p,, diffeomorphically onto U. This completes the
proof.

We need the following

LEMMA 11. Let A be a subset of M such that

(32) A is a union of maximal integral curves of d as well as a union of
maximal integral manifolds of d-*.

Then either A is empty or A = M.

Proof. Clearly, (32) holds also for the complement M — A. Using
admissible neighbourhoods, it is easy to verify that both 4 and its com-
plement are open. This completes the proof.

PROPOSITION 2. Suppose that a compact spacelike submanifold M
of M is covered by d*- and, for any (¢, p) € R x M, the mapping

Dy: P(t, p) > N(p:p)

i8 a covering. Then M = A,; and one of the following cases holds:

(I) Any maximal integral curve of X intersects M for exactly one para-
meter value. In this case, D is a diffeomorphism of the product R x M onto M;
in particular, M is not compact. .

(I1) Any mawximal integral curve of X intersects M for imfinitely many
parameter values. In this case, M is the space of a locally trivial bundle
with base 8* and fibre M; in particular, M is compact and its fundamental
group contains the group of integers.
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Proof. Let a maximal integral manifold N of d' intersect 4,,, say
N = N(¢p). Then N = &(P(t,p)) < Ay. By Lemma 11, A, = I,
hence each maximal integral curve of X intersects M.

Suppose that

(I) ift pe M and ¢;p € M, then ¢ = 0.

In this case @: Rx M — M is clearly one-one and onto, so it is a
diffeomorphism. Each maximal integral curve of X meets M for exactly one
parameter value.

The remaining case is now
(II) ¢,p € M for some p € M and ¢ +# 0.

We can clearly claim that ¢{ > 0 in (II). Since M is compact, there
exists ¢ > 0 such that thé conditions ¢ € M and ¢,q € M imply that either
s =0o0r |8 =c¢

Now choose p e M and ¢t> 0 such that ¢,p € M. For any ¢ e M,
let : [0,1] > M be a continuous curve with z(0) = p, #(1) = ¢q. Set
N = N(¢;p). The mappings

Pu: Ptyp) > M and &: P0,pp)—>N

are coverings. Let
y: [0,1] > P(t, p)
be the p,,-lift of x with y(0) = (¢, p), say
y(8) = (-To(s)’ m(s)),

and let
z: [0,1] > P(0, ¢,p)

be the ®-lift of oy with 2(0) = (0, ;p), say

2(8) = (T1(8)5 21(8))-
We have
®(To(3), 2(3) = D(y(3)) = D(2(s)) = B(T1(s), 24(s)),

80
(33) (T (s), x(8)) = x,(8) e M, where T(s) = To(8)—T,(s).

We assert that T'(s) > 0 for s € [0, 1]. cherwise, choose the smallest
8o € [0, 1] with T'(s,) = 0. Clearly, s, > 0, since T(0) =t > 0, 80 0 < T'(s)
< ¢ for s sufficiently near s,, a contradiction with (33).

Therefore ¢, g€ M, T(1) > 0. We have thus shown that for each

q € M there exists s > 0 such that ¢,q € M. Using the compactness of M
we can define a function 7: M — R by

T(p) =min{t >0|gppe M}>e¢

7 — Colloquium Mathematicum XXXVII.1
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Let p e M. Choose a coordinate system (W,z? ...,2") at @pg,p
such that WN M is defined by z° = 0, and let V,, U, be neighbourhoods
of T(p) in R and of p in M such that &(V,x U,) « W. The function
F: V,x U,- R, given by F(t,q) = 2°(¢,q), satisfies the conditions

oF
F(T(p),p) =0 and ——(T(p),p) = g(da®, X) #0.

By the implicit function theorem there exist neighbourhoods U < U,
of p and V < V, of T(p), and a C* function T, on U such that, for any
q € U, T,(q) is the unique element of V with &(T,(q), g) € M. Since T,(p)
= T(p) > 0, we may assert T, > 0 by taking U smaller, if necessary.

Now suppose that p,, —p, p,, € U. Clearly, e <T(p,) <T,(p,), so

limsup 7 (p,) < T'(p).

Suppose that liminfT(p,,) < T(p). Then some number ?, € [, T(p))
is the limit of a subsequence of T'(p,,), hence ®(¢,, p) € M in view of com-
pactness, which contradicts our choice of 7'(p). Therefore, 7' (p) = lim T (p,,)
which proves that T is continuous. Let U’ < U be a neighbourhood of p
such that T(U’) < V. Clearly, T = T, on U’, hence T is of class C*.

Similarly, we can prove that for each q € M there exists s < 0 such
that ¢,q € M and that the function 8: M — R, where

S(¢) =max{s< 0|p,ge M} < —¢,

is of class C. Define Z: M — M by Z(q) = ¢pqq- It is easy to see that Z
is a diffeomorphism, since Z~'(q) = pgy4- ~
Now let us define a continuous mapping H: [0,1]XM - M by
H(s,p) = ¢(8T(p),p) = Qs1(p)P -

We assert that H maps onto M = A,,. Given p € M and ¢ > 0 (respec-
tively, ¢ < 0), define the sequence T, (respectively, §,,) by

T, =T(p), Tm+1=T(¢(T1+"' —I—Tm,p))

(respectively, 8; = 8(p), 8y = 8(P(81+ ... + 8y, p))). These definitions
make sense since @(T,+ ... +T,,,p) € M. For m =1 it is clear.
Suppose it holds for an arbitrary m. Then ’

DO(Ty+ cee +Tpppa, P) = ¢(-Tm+17 O(Ty+ ... +Tm’p))
=Z(¢(T1—|—... +Tm,p))EM

(similarly, @(8;+ ... +8,,p) € M). We have T',+T,+ ... = oo, since
T, > ¢ (respectively, 8;+8;+ ... = —oo, since 8, < —¢). Therefore,
we can choose m and s € [0, 1] such that

t = T1+ eee +T _1+8Tm
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(respectively, ¢t = S8;+ ... +8,_,+88,). Set
q =0T +... +T,_,,p)e M,

go T, = T(q) (respectively, ¢ = ®(8;+ ... +8,_1,2), 80 8, = 8(q)).
We have ‘
P = @or, 4 = P(8T(q),9) = H(s,q)
(respectively, ¢,p = ®((s8 —1)8,, P(8n, 9)) = P((s —1)S(q), Z7(g))
= cD((l—s)T(Z"(q)),Z“(q)) = H(1—s,Z '(q))), which proves that H
maps onto M.
Suppose that H(t, p) = H(s,q), 80

®(tT(p), p) = P(sT(9), q)-
Let, e.g., tT(p) = sT(q), hence

g = D(tT(p)— T (), p),

so either iT'(p) —sT(q) > T(p), which yields 8 =0, ¢ =1 and ¢ = Z(p),
or sT(p) = tT'(q), hence p = q and s = {. Therefore, H induces a homeo-
morphism of B onto M, where B is the space obtained from [0, 14 x M
by identifying {0} x M with {1} x M by means of the diffeomorphism Z.
Thus M is the space of a locally trivial bundle with base S' and fibre .
It is easy to see that the homomorphism of fundamental groups, induced
by the bundle projection M — §', is surjective, hence =, M o =, 8'. This
completes the proof.

Now we are in a position to prove ,

THEOREM 1. Suppose that M is a compact spacelike submanifold of M.
Assume that one of the following conditions is satisfied:

(i) M is complete in § and |d(t, p)| < C for each te R and p e M;

(ii) M is covered by d* and its fundamenial group =, M is finite;

(iii) » = 0 identically on M and the first real cohomology group H'(M, R)
8 trivial.

Then the assertion of Proposition 2 holds.

Moreover, any of conditions (ii) and (iii) implies that each maximal
integral manifold of d*+ is compact.

Proof. (i) Let M be complete in g and let |d(¢, p)| < C for each ¢
and p. We are going to prove that, for any (¢,p) e RxM, P = P(t, p)
i8 complete in the metric induced from R x M, which we denote also by @.
Our assertion will then follow from Proposition 2, together with Propo-
sition 1, (25) and Theorem 4.6 of [4], p. 176.

Given a vector Y € TP, say Y = g,, where y, = (¢(s), z,), we have
clearly

@y = @_yP(y,) and Ty = (P_t(0))+ P Y —1'(0) X,
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hence
(34) w(Pa)s ¥ = ady, = d(—1(0), D(y,)) P+ Y.

Therefore, the metric p3,h on P, induced by the covering p,: P - M
from the metric » on M, satisfies the condition

(35) puh(Y, 1)< CG(Y, Y).

In view of the compactness of M and by Theorem 4.6 of [4], p. 176,
P is complete in p, h. It follows from (35) that each Csuchy sequence in
(P, @) is a Cauchy sequence in (P, p3,h). Hence P is complete in G.

(ii) Suppose that M is covered by d* and that =, M is finite. For
any (¢,p)e RxM, py,: P— M is a finite covering, where P = P(t, p),
hence P is compact. In view of (25) and Corollary 4.7 of [4], p. 178,
@: P — N (¢;p) is a covering and N (¢,p) is compact. Our assertion follows
now from Proposition 2. °

(iii) Let v = 0 and H'(M, R) = 0. It follows easily from Lemma 7
that- the flow L, of ®*X leaves the disteibution D! invariant. In view
of Proposition 1, M is covered by d*. Therefore, for any continuous curve
z: [0,1] - M, the value

2(#) = pr(y(1) —pr(¥(0)),

where y is any p,,-lift of  to a maximal integral manifold of D+, depends
only on z. Clearly, z may be considered as a 1-dimensional real singular
co-chain in M. Any 2-dimensional singular simplex in M admits a p,,-lift
to a maximal integral manifold of D', hence dz = 0, that is, z is a co-
cycle. By our assumption, there exists a 0-dimensional real singular co-
chain f such that z = Jf. In other words, f is a real function on M and
z(z) = f(2(1)) —f(«(0)) for any continuous curve z: [0, 1] —> M. It follows
that for any maximal integral manifold P of D' the covering projection
py: P — M is one-one, so it is a diffeomorphism. In fact, for (s, p), (¢, p)
in P, choose a continuous curve y: [0,1] — P such that y(1) = (¢, p)
and y(0) = (s, p). Setting # = p,0y, we have |

0 = f(=(1)) —f(2(0) = 2(2) = pr(y(1) —pr(¥(0) =t—s,

8ot = s, a8 desired. Hence P is compact. The rest of the proof goes as in (ii).

Remark. Suppose that M is compact and ||d(¢, p)| < C for any ¢
and p. If M is a compact spacelike submanifold of M, then, by Theorem 1,
M is the space of a bundle with fibre M over §'. Namely, to obtain M
we must identify the subsets {0} x M and {1} x M of [0,1]x M by the
diffeomorphism Z: M — M, where Z(p) = ¢y, P (see the proof of Pro-
position 2).
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Now let C =1, i.e., w = 0 identically. Then Z is an isometry of
(M, h) onto itself. In fact, let ¥ € T, M, say ¥ = y(0). Then

d
ZY = pra¥(8) | = (prmh Y +dT (D)X,
b 8=0

80 ZxY = (@pp))s®Y +aX for some ‘a, since X is invariant by er(,-
Therefore

nZyY = d(T(p), p)nY
and our assertion follows from Lemma 8.
Using Theorem 1 we obtain

COROLLARY 1. Suppose that M is complete in g and |d(t, p)| < C
for each te R and p € M. If M admits a compact spacelike submanifold,
then M cannot simultaneously be compact and have a finite fundamental
group. In particular, (M, §) cannot be a space of constant positive curvature.

Proof. Suppose that (M, j) is a space of constant positive curvature.
By Corollary 2.4.10 of [5], p. 69, M is compact and has a finite fundamen-
tal group, which contradicts Theorem 1.

THEOREM 2. Suppose that M is mnon-compact, complete in § and
id(t, )| < C for any te R and p € M. Then any two compact spacelike
submanifolds of M are diffeomorphic.

Proof. Suppose that M is a compact spacelike submanifold of M.
Then (I) of Proposition 2 holds. For another compact spacelike sub-
manifold M’ of M, the mapping p,: D~ '(M’) - M is one-one. In fact,
otherwise M’ would meet some integral curve of X twice which, in view
of Theorem 1, would imply that M is compact. Hence ®~(M’) is difico-
morphic to M, which completes the proof.

Let ¢ = g¥v,v; = §”7v;v; denote the square of length of v. From (21)
we obtain easily the relation V,v, = ——.,'vo = 0(y 1IN admissible coordi-
nates. Since the field v is spacelike, it is easy to verify that v is parallel
in (M, g) (or in (M, §)) if and only if v vanishes.

We shall consider some consequences of the case where » or w vanishes
identically.

PROPOSITION 3. Suppose that v = 0 identically on M, and N is a maxi-
mal integral manifold of d*+. Then o

(i) ¢ N is a maximal integral manifold of d*+ for each t € R.
_teR
(iii) Any two maximal integral manifolds of @+ are diffeomorphic.

(iv) The set E = {t e R|g,N = N} 18 independent of the choice of N
and t8 an additive subgroup of R. Therefore, either E = 0, or E = aZ for
some a > 0, or E is dense in R. If E = 0, then M 1is diffeomorphic to the
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product RX N. If E = aZ, a > 0, then M is the space of a locally trivial
bundle with base ' and fibre N. If E i8 dense in R, then none of marimal
integral manifolds of d+ has the relative topology.

Proof. (i) follows immediately from Lemma 7, and (ii) from Lemma 11.
By (ii), each maximal integral manifold of d* is of the form ¢, N, hence
(iii) holds and F is independent of the choice of N.

Let E = 0. Then ®5: Rx N — M is a diffeomorphism, since p ¢ N
and ¢,p € N implies ¢ = 0.

Suppose that E = aZ, a > 0. Define a continuous mapping

H: [0,11xN > M
by
H(t’ p) = Q-
Let B be the space obtained from [0,1]x N by identifying (1, p)
with (0, ¢,p) for each p € N. Thus B is the space of a locally trivial bundle
with base 8' and fibre N, and H induces a continuous one-one mapping H

of B onto M. For the point ¢ of B, determined by (1, p) and (0, ¢,p),
the sets of the type

Ve, U) =(1—e,1]x UV[0,¢e)x¢,U,

where ¢ € (0, 1), and U runs over neighbourhoods of p in N, determine
a base of neighbourhoods of ¢ in -B. Clearly, the H-image of such a base
neighbourhood, } '

H(V(e, U) = By((a—ea, a] x U) Uby([a, a+ea) x U)
= Oy((a—ca, a+ca)x U),

is open, since @, is locally diffeomorphic. Now it is easy to verify that A
18 open, hence it is a homeomorphism. If ¥ is dense, we may choose a se-
quence t,, € B, t,, # 0, t, — 0. For an admissible neighbourhood (W, z°, ...
..., 2") of p, the equation 2° = 0 defines a neighbourhood of p in N (p).
This neighbourhood is not of the form N (p)NnU for any open subset U
of M, since p ¢ U implies ¢, p € N(p)nU for sufficiently large m. This
completes the proof.
' Now suppose that w vanishes identically on M. By (34) and Lemma 8,
Py: P — M is a local isometry for any maximal integral manifold P of
3, M being a spacelike submanifold of M considered with the metric
h = h;y;. Therefore we have _

PROPOSITION 4. Suppose that w = 0 identically and M-is a spacelike
submanifold of M. If any of the Riemannian manifolds (M, g) and (M, g)
18 flat, then so 18 (M, h). If M is complete in the induced metric, then in this.
case the k-th homotopy group of M is trivial for each k > 2. If, moreover, M
is compact and M is orientable, then the Euler characteristic of M is even.
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Proof. (M, h) is flat in view of the preceding remark, (25) and
Lemma 9. If M is complete, then the relation A(Y,Y) = g(Y, Y)+
+(9(Y, X))* for ¥ € TM shows that M is complete also in h, hence our
assertion on homotopy groups follows, e.g., from Hadamard-Cartan
theorem (cf. [2], p. 206). If M is orientable, then so is M, since X is a nor-
mal vector field on M. From Proposition 6.13 of [3], p. 41, it follows now
that y(M) is even if M is compact. This completes the proof.

COROLLARY 2. Suppose that M is 3-dimensional, complete in §, and
w = 0 identically. If one of (M, g) and (M, §) i3 flat and M admits a com-
pact spacelike submanifold, then the fundamental group of M contains the
group of integers.

Proof. Let M be a compact spacelike submanifold of M. In view
of Proposition 4, (M, h) is flat, hence M is homeomorphic either to the
torus or to the Klein bottle. Considering both cases of Theorem 1, we
conclude our assertion.

I wish to thank Dr. Witold Roter for his encouragement and helpful
criticisms of this paper.
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