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BY
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It has been pointed out by Mrs. T. C. Stevens [3] that the proof of
Theorem 5 given in [1] is wrong. Indeed, the function D(r) defined at the
bottom of p. 205 does not fulfil the crucial triangle inequality, e.g.
D(7/16) > D(1/2)+ D(—1/16).

Therefore, 1 give here a different proof of the main part of Theorem 5
based on an unpublished result of P. Erdds, mentioned on p. 207 in [1],
which I show in a slightly stronger form.

THEOREM 5. In the group L of reals an invariant metric ¢ can be
effectively constructed, so that L is complete, non-discrete and non-separable.
The function g(a, 0) is measurable and satisfies the Baire condition.

Proof. For ae L we define N(a) by the formula similar to that used in
the proof of Theorem 4 in [1]

where the infimum (possibly equal to infinity) is taken over all
representations of a in the form ) &/a;, ge{l, —1}, a; > 1, q; integers. We

i=1

note that
(1) N(@)>lal and N(x+pB) < N(a)+N(p).

THEOREM T. If N(a) < oo then either a is rational or for every n > 4 there
exist infinitely many integer pairs (p, q) such that

Ia - p/ql < exp ( - (log q) (lng q)|084q...]ognq),

where log, q = logg, log;q = loglog;_,q for j=2,3, ...
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For the proof of the theorem it is convenient to introduce functions
Lo(t)=t, Ljt)=1+logL;_,(t), j=1,2,...
which for t > 1 satisfy the inequality
1< Li(t)< Ly, (1)
LemMA 1. For n> 2, d = n*"~Y we have for all 1 > 1 the inequality
d nl:lz Lyh)>2 nl:lz Lydr1).
j=1 ji=1
Proof. Taking d = 6""! it is enough to show that for all / > 1 and all
positive j < n—2
SL;() > Ly(6" ' I 1.
For I =1 we have
SLi(1) =8> 1+(n—1)logé =L, (6" )= L;(6"™").

On the other hand, the derivative with respect to | of
oL;()—L;(6" ' I 1)
equals

0 _ n—1
Lj-l(l) Ll (I)I Lj- 1 (6"-1 l"‘l) Ll (5»—1 In—1)19

which is positive for /> 1.
LEMMA 2. Let b, be a non-decreasing sequence of integers greater than 1.

If
2

ad 1

,‘; log log 2b, =
then for every n = 4 there exists an | > 1 such that

n
@ n Lj(blbz...'bl_ 1)

| .
G ¥ g <exp(=Lilbiby .. bio) La(biby . by

k=1

Proof. Let -) 1/loglog2b, = c. We shall show first that for all | we
k=1 :
have

il | 3¢
@) 22
2.5 <hP
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Indeed, the number of integers b, < b does not exceed cloglog2b < cb'/?
(b = 2). Hence
FSY X <X b
k=10 j=1 picp<pft1 k=1

cbyi*t Vi3 c - 3c
R VE] -1/3 1/3°

Suppose now that inequality (3) does not hold for any /> 1. Then by (4)

"L](bl b, l)

5) bi’® < 3cexp(Ly(by ... bi—y) Ly(by ... by—y)=*

We shall show by induction that for
d = max {loglog 2b,, log 54>, n*"~ 1)}

we have for all k> 1

(6) loglog2b, <d l_[ L;(k).
n—2

For k = 1 this follows at once, since [[ L;(1) = 1. Assume that (6) is true for
j=0

all k <!, where | > 1. We have

n—2
log 2b, <exp(d [] L;(k);
j=0

hence
n—-2
-1 exp(d [I L;(1-1))
L,(bl...b,-,)<l+z log 2b, < i=
k=1 1—e”

n—-2 n—2
< exp(d Ho Ly(h—d [] L;(),
i= j=1
n—2 n—2 n-2
Ly(b, ... bi_) < 1+d ]‘[ L(h—d ]‘[ Li(h<d I] L) <adrt,

Li(b; ... b_4) < ; L@l 2<j<n).

It follows now from (4) that

nLj(bl byp— 1)
log 2b; < log 54c*+3L,(by ... by—y) Ly(by ... by_,F=*

n—2 n—2 n—-2
<log54c®+3exp(d [[ Ly(h—d [] Ly(h+ [] Ly@rY),
=0 i=1 j=1
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hence in virtue of Lemma 1 and by the choice of d

log 2b, < 4exp(d H L;()—3%d H L;()) <exp(d H L;(1)

and the inductive proof of (6) is complete.

o n—2

The series Y. [] L;(k)™! is divergent since

k=1 j=0

xn—2

(T Ly~ "de =L,_,(%)-1,
1 j=0

thus (6) contradicts (2).

Proof of Theorem T. By the definition of N(x) we have, for suitable
integers a; > 1 and ge{l, —1}

“= .';1 Z;’ igl log log 2q;
Since Z 1/a; < 0, we order a;, a,,... in a non-decreasing sequence
by, bz,. (b 2) and find
o= =, e{l, -1}, —— < .
xgx by Ll kgx log log 2b,

By Lemma 2, for every n > 0 there exists an / > 1 such that

-1
}1 kzl bk
1-1

Taking g =b; ... b_;, p=q Y, m/b, we find ¢>2,
k=1

p
7 =
g -2

However, for g>2 we have L;(g)=>1+1/j+1) (=0,1,..), hence

z 1 nL,{bl by_y)

Z <exp(—Ly(by ... bj—y) Ly(by ... by Y=

k=1 k

ﬂ Ljg
<exp(—L,(q)L(gf~*" ).

lim ]_[ L;(g) = oo and the right-hand side of (7) tends to 0 when n tends
n—a j=4

to oé It follows that either a is rational or for each n >4 there exist
infinitely many integer pairs (p, q) satisfying (7). Since L;(q) > log;q, we

get the theorem.

CoroLLARY 1. If N(ax) < oo then either a is rational or it is a Liouville
number.
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| CoroLLARY 2. There are Liouville numbers o for which N (a) =

Deduction of Corollary 1 from Theorem T is immediate. A direct proof
‘along the same lines would be considerably shorter than the proof of the
said theorem.

An example of Liouville’s number a with N(ax) = oo is given by

a= ) 1/2
k=2

Indeed, the partial sums of the series give best rational approximations of a,
and hence if
2k! < q < 2(k+l)!

we find

P 1
a_E’ > saway > exp(—logg-(loglog q)®).

Therefore, N(x) = oo in virtue of Theorem T with n =4.
Proof of Theorem 5. Let us define the metric ¢(x, y) by the formula

1
1+N(x—y)~V
where, as usual, ©o™' =0. ¢ is a metric in virtue of (1) and it is clearly
invariant. In order to see that Lis complete with respect to g, let us take a

sequence (o) fundamental in g, hence also in N. Without loss of generality
(replacing (), if necessary, by its subsequence) we can assume that

N(ak+l"‘ak) < 1/2k.

®) o(x, y)=

-1

Thus there exist sequences (a;)2, (k =1, 2,...) of integers greater than 1
such that

o £ ) 1 1
=Y * (g =+1) and Y S@T
Tt 1% i=1 Gix (o = £1) " i=1 log log 2ay -

Putting

e

I|'M 8

we have limg(a,, a) =0
In fact, it follows directly from the definition of N that, for x;eL,

N(f: x;) < Z‘ N(x);
i=1 i=
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hence

N(ah—'a)=N(Z" (an+l-an))< gk N(au+l_an)< Z 1/2"“.l

n=k

and lim N(o;—a) =0, thus also lim g(x, @) =0
k k

L with respect to ¢ is non-discrete, since e.g. lim ¢(1/n, 0) =0

-

n

Suppose that L with respect to ¢ is separable and let {r,,r,,...} be a
dense sequence. For every xe L there is an r, such that o(r,, x) < 1, hence
N(x—r,) < oo and, by Lemma 2, x—r, is either rational or a transcendental
Liouville number. But the set of Liouville numbers has measure 0, hence the
real line would be a countable union of sets of measure 0, which is
impossible. The same argument shows that g(a, 0) is measurable. It remains
to show that g(a, 0) satisfies the Baire condition. To this end let us observe
that there is a one-to-one correspondence between the set Irr(—1, §) of all
irrational numbers in the interval (—4, 4) and the set of all pairs of sequences
(¢;) and (ag;) satisfying the condition

gell, —1), aq integer, a; =2, a+g.; =2 (i=1).

The correspondence is given by the expansion of an irrational number £ into
the continued fraction according to the nearest integer:

The numerators ¢;(£) and the denominators q;(£) are piecewise constant
functions of ¢, hence they are of the first Baire class. Let

1
X = ety 3 o < }
and let for e X

fo=y 2 Y p—

- 90 =) ———F
i=1 (<) g i=1 loglog 24;()
Both the set X and the functions f, g are B-measurable.
We can rewrite the definition of N(x) in the form

N(a) =inf{g(¢): (e X, f(&) =a}.

The condition ¢;, . +a; > 2 does not occur in the original definition of N (a)
but can be added there. Indeed, if +1/2 occurs in the representation of x as

Z &/a;, we can replace it by +1/4+1/4 diminishing Z 1/log log 2a;,

smce 2/loglog8 < 1/loglog4.
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In order to prove that g(a, 0) satisfies the Baire condition it suffices to
show that for each real a the sets

Si(@=1{aeL: N(@d<a} and S,(a)={aeL: N(a) > a)

satisfy the Baire condition.
We have

S.@= 0 {f): teX, g@<a+lm = 0 £g™(©, a+1/m)

Since X, f, g are B-measurable, g~ (0, a+1/m) is a Borel set for every m,
thus f(g~'(0, a+1/m)) is analytic and so is S, (a). Similarly,

S2(a) =L\ f(g™'(0, a)).

Thus S,(a) is an analytic complement and so it satisfies the Baire condition
as well as S, (a) does. Of course in this way we obtain another proof of
measurability of g.

Remark 1. In the Remark after Theorem 5 in [1] it is stated that a
separable complete Borel metric in L must be topologically equivalent to the
usual metric. However it is actually the Baire condition and not the B-
measurability that is responsible for this statement.

Remark 2. The numbers ae L with g(a, 0) < 1 or, equivalently, N (x)
< oo, form an additive group G. Since G # L, it is totally disconnected in
the topology induced by ¢. On the other hand it is generated by every
neighbourhood of zero, since if

x=) =, Z <

' log log 24; log 2q;

=3 (e +_.) 5o

<
i1 \4 i< loglog2d;m *

and, for m large enough, ¢;/a;m is in any given neighbourhood. Therefore G
furnishes another example of the phenomenon exhibited by T. C. Stevens [3],
which yields a negative answer to Mazur’s problem 160 [2].
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