COLLOQUIUM MATHEMATICUM

VOL. XXXIV 1975 FASC. 1

SEMILATTICES DO NOT HAVE EQUATIONALLY
COMPACT HULLS

BY

EVELYN NELSON (HAMILTON, ONTARIO)

A semilattice is an algebra with one binary operation A which is
associative, commutative and idempotent. Each semilattice has a natural
partial ordering on it, given by a < b iff aAb = a; the symbol v denotes
the least upper bound (join) under this partial ordering.

Recall that an algebra A is equationally compact if every subset
2 < A[XP (A[X] is the free extension of 4 by the set X in any equational
class containing A4) is contained in the kernel of a homomorphism A [X]
— A over A whenever every finite subset of 2’ has this property. An exten-
sion B of an algebra A is pure if every finite subset of A[XT is contained
in the kernel of a homomorphism A[X] - 4 over A whenever it is con-
tained in the kernel of a homomorphism A [X]— B over A. These notions
were introduced for gencral algebras by Myecielski [4] and Weglorz [11],
respectively; the present algebraic formulations can be found in Bana-
schewski and Nelson [1].

The equationally compact semilattices were characterized by Gritzer
and Lakser [3] as those semilattices 8 which are conditionally complete
(1. e. every non-empty subset has a greatest lower bound), in which every
chain has a least upper bound, and in which the distributivity law
an\/C = \/{anc | ceC}holds for all ae S and for all chains C = §. Bulman-
Fleming [2] has proved that every equationally compact semilattice
is a retract of a (topologically) compact one, and Taylor [10] has improved
this replacing “retract of a compact one” by “retract of a product of
finite semilattices”.

It is easy to see that every semilattice has an equationally compact
extension; this is provided by the usual embedding of a semilattice S
into P(8), the power set of S with the operation of set intersection, which
maps 8 to {ae S | a < s}, and the fact that P(8) is isomorphic to the
S-th power of the two-element semilattice and hence is equationally
compact.
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A semilattice 8 has an equationally compact hull (in the class of all
semilattices) iff it has a pure, equationally compact semilattice extension
(Banaschewski and Nelson [1], Proposition 2). It is the aim of this note to
prove that semilattices do not have equationally compact hulls by exhi-
biting, for each infinite cardinal n, an n-element semilattice S, which has
no pure, equationally compact, semilattice extension. (Note that such
a semilattice has no pure equationally compact extension at all; see [1],
p. 1566, Remark 2.)

By Theorem 3.12 of Taylor [8] or Proposition 4 of Banaschewski
and Nelson [1], it will then follow that there are pure-irreducible semilat-
tices of arbitrarily high cardinality; in fact, we will see that all 8§, are
actually pure irreducible.

The reader is referred to [1] for all notions concerning purity and
equational compactness which are not defined here.

Definition of §,. For any cardinal number n (finite or infinite),
let S, he the semilattice with underlying set (n x {0, 1})u{u, 1} (where
ugn x{0,1}) and with the operation defined by

xAl =x for all w,
(2, 0Au = (A, 1)Au = (4,0) for all A <mn,
(4, 00 (1, 0) = (4, 0)A (u, 1) = (min(, #), 0) for all 4, u < n,

(min(4, ), 0) if 1 is even and x is odd or vice versa,

(17 1)/\ (”7 1) - (mm(l, #)’ 1) Otherwise.

The underlying partially ordered set of §, is depicted in Fig. 1.

First of all, note that, for all n, there are no elements z, ye¢ S, such
that xAu4 = yAu = zAy and zA(0,1) = (0,1) and yA(1,1) = (1, 1).
Indeed, if A (0,1) = (0, 1), then either z = 1 or ¢ = (4, 1) for some even
A < n and, similarly, ¥y =1 or ¥y = (g, 1) for some odd g < n; since zA%
= yau, it follows that # =y =1, and thus Ay =1 # rAau. Thus

2= {(m/\u, Yau), (BAu, TAY), (.’D/\(O, 1), (0, 1))7 (?/’\(17 1), (1, 1))]

is a finite subset of Sn[{w, y}T* which is not contained in the kernel of any

homomorphism 8,[{z, y}] > 8, over 8.
Now suppose that, for some infinite n, 7 2 8, is an equationally
compact extension. Then it follows from the Gratzer-Lakser result men-

tioned above that, in 7, the sets
Co={(A,1) | 4 even}, C,=1{(4,1)| 41 0dd} and OC,=nX{0}

have least upper bounds. Let z = \VC,, ¥ = \VC,and 2z = \/ Cy. Then,
again by the Gritzer-Lakser result,

uAx = \V{ua(4,1) | 2 even} = \/ {(1,0) | A even} = z.
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(This uses the fact that n is infinite.) Similarly, Ay = 2z = ZAYy. Triv-
ially, ZA(0,1) = (0,1) and yA(1,1) = (1,1). Thus (with X as above),
the homomorphism 8,[{z,y}] - T over 8,, mapping # to Z and y to
¥, contains X in its kernel and, consequently, T is not a pure extension

of §,. It follows that 8, has no pure, equationally compact extension.

(00)
Fig. 1

Now suppose that n> 0 and that 6 is a proper congruence on 8,,.
Then it is easy to see that either (v, 1) 6 or ((4, 0), (A+1, 0))e 6 for some
A<mn or ((0,0),(0,1)e6 or ((1,0),(1,1))eo.

In case (u,1)e 0, let z =7 = 1.

In case ((4,0),(2+1,0))e6 for A even, let Z =(4,1) and ¥ =
= (A+1,1).

In case ((4,0),(1+1,0))e06 for 2 odd, let Z = (A+1,1) and ¥ =
= (4, 1).

In case ((0,0),(0,1))c6, let Z=(1,0) and ¥ = (1, 1).

In case ((1,0),(1,1))e6, let £ =(2,1) and ¥ = (2, 0).

Then, in all cases, (ZAu,§Au), (EAY, TAu), (A (0,1),(0,1)) and
(FA(1,1),(1,1)) belong to 6.
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It follows from this (see Taylor [8], Lemma 3.4, or Banaschewski
and Nelson [1], Lemma 5) that 8, is pure irreducible for all (finite or im-
finite) n > 0.

As mentioned above, Taylor has proved that every equationally
compact semilattice is a retract of a product of finite semilattices. His
short proof uses some rather complicated results, including the one of
Numakura [6] that every totally disconnected topologicali semigroup
is an inverse limit of finite discrete ones. We close by giving a modification
of Taylor’s proof which is straightforward and self-contained, and does
not use this result of Numakura. The following proposition is essentially
a corollary to Theorem 3.1 of Pacholski and Weglorz [7] (sce also Tay-
lor [9], Lemma 7.1); the present proof uses algebraic, rather than model-
-theoretic, techniques.

PROPOSITION. If A is a compact Hausdorff topological algebra, and if
€ is a down-directed set of closed congruences on A with

NC =4, ={(a,a) | ae A},
then the embedding A —[[ A]0 (0 €) is pure (and hence is retractable).

Proof. Let A[X] be, as usual, the freec extension over A by the set
X in some convenient equational class containing A. For cach ge A%,
let §: A[X]—A be the homomorphism over A extending g. Then, for
cach pe A[X], the map p: AX — A, given by p(g9) = §(p), is continuous
with respect to the product topology on AX. Thus, for each (p, q)e A[ X,
if 6 is a closed subset of A® then

{ge A* | (§(p), G(@))e 6} = [ge A* | (p(9), q(9))< 6}
is a closed subset of A%,
Now suppose that X< A[X])® is a finite subset which is con-
tained in the kernel of some homomorphism A[X]—~[[A/6 (6¢€) over
A —~[]A[6. For each 6¢C, let

8y = {ge AT | §*(2) = 6};

then the S, form a down-directed collection of non-empty closed subsets
of A%. Since A, and hence also A%, is compact, there exists ge () 8,.
But M€ = 44, and thus X < Kerg. This proves that the embedding
in question is pure.

COROLLARY 1. If A is a compact algebra in which the closed congruences
6 of finite index (i.e. with A |0 finite) separate the points of A, then A is the
(algebraic) retract of a product of finite algebras (each of which is a quotient
of A4).

Proof. In any topological algebra, the set of closed congruences
of finite index forms a down-directed set (since there is an embedding
Al6,n0, > A6, x A]B,).
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COROLLARY 2. Every equationally compact semilattice is a retract of
a product of finite ones.

Proof. Bulman-Fleming [2] has shown that every equationally
compact semilattice is the retract of its closure S in 25. The closure S,
being a compact subspace of 25, obviously satisfies the hypotheses of
Corollary 1.

One final comment. S, is the underlying A-semilattice of a complete
lattice, and we have seen that, despite this, 8, (for n infinite) does not have
an equationally compact hull. However, since, by the Gritzer-Lakser
characterization, the underlying A -semilattice of the lattice of all ideals
of any lattice is an equationally compact semilattice, and since the embed-
ding of every distributive lattice into its ideal lattice is pure (Nelson [5]),
and hence also pure as a semilattice homomorphism, it follows that any
semilattice which is the underlying A -semilattice of a distributive lattice
has an equationally compact hull in the class of all semilattices.
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