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1. Introduction. Let X be a set with a separable (countably generated
and separating points) g-algebra £ of its subsets and with a o¢-ideal &
of #. A #Z-measurable transformation f of X with the domain D(f) € #
is called non-singular if f~'(I) € # whenever I e #. We call it two-sided
non-singular if also f(I) € # for any I € #. By J we denote the semigroup
of all non-singular transformations with the multiplication defined by

(f9)(z) = g(f(@)) for = e D(fg) =F'(D(g)).
We say that a semigroup S acts on X if there is a homomorphism 8 — f,
of § into 7. §
By B we denote the quotient Boolean o-ring #/.#. A mapping F from
B into B is called a o-endomorphism if it preserves differences and countable
unions of elements. The semigroup of all s-endomorphisms of B with the
multiplication defined by

(FG)(a) = F(G(a))

will be denoted by T. We say that a semigroup S acts on B if there is
& homomorphism s—F, of 8 into T'; S acts automorphically on B if the F,
are automorphisms of the Boolean ¢-algebra B.

Every element f of  induces an element F of T by means of the
formula

F([4]) = [f'(4)],

where A € #, and [A] is the equivalence class of .A. The mapping f—F
is clearly a homomorphism of 9 into T. In the opposite direction, Sikorski
has proved that every element of T is pointwise induced by an element of
7, provided X is a Borel space (see Theorem 5.1 of [6] or Theorem 6.3
of [7]; a simple proof using a characteristic function of a sequence of
sets is presented in [8], 32.5). We recall that X is called a Borel space
if it is Borel isomorphic to a Borel subset of the Hilbert cube. If two trans-

* This paper is based on the author’s doctoral thesis written under the supervi-
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formations f and g induce the same o-endomorphism of B, then they
are equal almost everywhere: the symmetric difference D (¢9) 4 D (f)
and the set {x € D(f)NnD (g9): f(x) # g(«)} are in # (see the proof of 4.5
in [6]).

The question arises whether for a Borel space X and for a given
semigroup 8 wcting by s—F, on B there is some action s—f, of § on X
such that f, induces F, for any s € 8. The difficulty in finding such a si-
multaneous choice of the f, lies in the fact that transformations chosen
individually for the o-endomorphisms F, need not form a semigroup.
If such a choice s— f, exists, we say that S is pointwise induced by the action
s—f, on X or, simply, by the transformations f,.

In his paper [4], Mackey has given a positive solution of this problem
under the additional assumptions that S is a locally compact second count-
able group acting automorphically on B, # is the o-ideal of zero sets for
some finite Borel measure, and the action of § on B is measurable in the
sense that the real function s—>m(F8([A])) is Borel measurable for any
A in # and for any finite measure m on B.

Ours is a different approach as we are concentrating on discrete rather
than topological semigroups. The results thus obtained differ essentially
from those of Mackey. In this paper we present positive solutions if § is
a countable semigroup (Theorem 1), if S is a free product of countable
semigroups (Theorem 2), and, under some additional conditions, if § is a di-
rect sum of N, countable semigroups (Theorem 3). This last result enables
us to obtain, under the continuum hypothesis, positive solutions for addi-
tive groups R", n =1,2,...,N,, acting automorphically on B (Corol-
lary 1). Finally, we indicate some relations to the existence of a lower
density (Section 7) and shortly discuss connections with deterministic
sub-Markov operators (Section 8).

2. Countable semigroups. Let & be a subsemigroup of 7. A subset
A of X is called invariant with respect to & if f~'(4) < A for any fe .

Obviously, Bu |J f~!(B) is the smallest &-invariant set containing B.
Je&

LeMmA 1. Let 8 be a countable semigroup acting by s—F, on B. If
each F, is pointwise induced, then also 8 is pointwise induced.

Proof. For any s in § let f, be a non-singular transformation inducing
F, and let & denote the semigroup generated by all the f,. Since f,f, and
fst induce the same o-endomorphism Fy,, the set

L. = { e D(f, )0 D(fo): (fofd)(®) # fu(®)}V (D(fof) AD(fa))

is in # for any s,t in 8. We denote by I the smallest &#-invariant set
containing the union of the I,, for s,te 8. Since & is countable, we
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clearly have I € #. Let us put

9s = fslD(f)—1 for any se 8.
Obviously, g, induces F,, and it is & routine to check that

9:(®) = fu(®) = (fo ) (®) = (9, fi) () = (,9:) ()
for x € D(gy)VD(g,9:); 8,8 €8.

Therefore, g,, = g,9, and s— g, is the required action of 8 on X.
Using the already mentioned result of Sikorski we obtain

THEOREM 1. If X 48 a Borel space, then every countable semigroup
S acting on B i8 pointwise induced.

It should be noted that in case where the F, are s-endomorphisms
of B regarded as Boolean o-algebra, i.e. if #,([X]) = [X] for any 8 € S,
the transformations f, can be chosen so that D(f,) = X and, by putting
gs(x) = z for z € I, we obtain transformations g, acting on the whole X.
The action s—g, pointwise induces S.

3. Free products. A semigroup S is called the free product of its sub-
semigroups S, ¢ € I, if every element of § has a unique representation
in the form s,... s;, k > 1, with 8; € §;;, and i(j) #4(j+1) for j =1,...
eeey =1 ([1], § 9.4).

LEMMA 2. Let a semigroup 8 acting by s—>F, on B be a free product
of its subsemigroups S;,t € I. If the S; are pointwise induced, then also
8 18 pointwise induced.

Proof. Suppose that any §; acts on X by s—f,, and f, induces F,
for s € §;. For any s in § we take its unique representation s;...s;, s; € 8;;),
i(§) #14(j+1), and define f; by putting f, =1, ... f,,. Clearly, f, induces
F, ... F, = F,, so that s—f, is the required action of § on X.

In particular, by Theorem 1 we obtain

THEOREM 2. Let X be a Borel space and let a semigroup S act on B. If

8 i a free product of its countable subsemigroups, then 8 is pointwise induced,

Since for any family of countable semigroups we can construct
their free product, there exist uncountable semigroups satisfying Theo-
rem 2. It is, however, less trivial that there are such semigroups acting
effectively on B, i.e. such that s—>F, is one-to-one.

Example. Let us assume that X is the real plane, # the Borel ¢-al-
gebra of X, and £ the trivial o-ideal {@}. Let X, ¢ € I, be the partition
of X into the vertical lines. It follows from the isomorphism theorem for
Borel sets ([3], § 37, II, Theorem 2) that for any ¢ € I there exists a Borel
isomorphism f; from X onto X,. Let us observe that for any x, ¥y not in
X, and for any positive integers m, n we have

@) =fily)=m =mn,z =y.
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In fact, if, e.g., m < m, then

& = fi™ (@) = i) e X,

a contradiction;.or m = n the assertion is trivial. Now we show that the
semigroup < generated by the f;,: € I, is the free product of its cyclic
subsemigroups {f': n» > 1}, e I. To this end, suppose that

f;{nl cee ‘ikk =L?;l -..f;-’:l,

where i, % 1,,; and j, # jyfor1 <s<k—1,1<i<1—-1.Forany element
« in X, its image by the left-hand side of this equality is in X, and that
by the right-hand side in X . Therefore 4, = j;, which implies m; = n;. Pro-
ceeding by induction we obtain k =1, ¢, = j,, and m, = n, for 1 < s < k.
Since # is trivial, the transformations f of X can be viewed as o-endo-
morphisms F of B, thus the action f— F of & on B is effective. The same
argument works if .# is the o-ideal of countable subsets of X.

4. Semigroups of two-sided non-singular transformations. Let & be
a semigroup of two-sided non-singular transformations on X. A subset
A of X is called two-sided invariant with respect to & if both f~'(4) and
f(A) are subsets of A for any f in . Let us observe that 4 is two-sided
invariant if and only if f~'(4) = A for any fe . For any B < X the
smallest two-sided invariant set containing B is equal to

BUUfit...fir(B),

where f,,...,f, ran over all finite sequences of elements of &, and
iyy .- 1, € {—1, 1}. By an argument analogous to that in Lemma 1, we can
see that any countable semigroup 8§ acting by s—F, on B is pointwise
induced by a semigroup of two-sided non-singular transformations, pro-
vided each F, is induced by such a transformation.

LeMMA 3. Suppose that S, and 8; are countable semigroups. Let both
S, and 8, act on X by s—f;, all f, being two-sided non-singular transforma-
tions, and let f, f;, = f, [, almost everywhere for all s € 8, and te8,, Then
there exists a (possibly) new action t—g; of 8; on X such that f, = g, almost
everywhere and f,g, = ¢, f; for all s € 8, and t € 8,.

Proof. Let for any s e S, and t € 8,
I, = {x € D(f, f)ND(fifs): (fi f) (@) # (L f) (@)} (D(f, f) 4 D(f.f,).

Clearly, I,, €4 and the union of all I,, is contained in J €.,
a two-sided invariant set with respect to the semigroup generated by
{f,: 8 € SUS,}. Letting

g =LID(f)—J fortes,,

we obtain the required action of 8;.
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Let us note that if all f;, ¢ € S;, are defined everywhere on X, then,
extending the g, as in the remark at the end of Section 2, we may assume
that also all g, are defined everywhere. In particular, if some f, is the iden-
tity transformation of X, then g, can be taken to be the identity.

5. Direct sums. The direct sum of semigroups with identities is.
& natural generalization of the direct sum of groups. The following defini-
tion is adopted from [1], § 9.4:

Let {8;:4 € I} be a non-void family of semigroups with the identity
elements ¢; € S;. The set >*8; of all (s;) € []S; such that s; = ¢; for all
but finitely many indices is called the direct sum of the semigroups S;.

For any j € I the isomorphism s;—(s;) with s; = ¢; for ¢ 3 j is called
the na,tuml imbedding of 8; into >* S We say that a semigroup § with
the 1dent1ty element ¢ is the direct sum of its subsemigroups 8; containing
e if the natural imbeddings S;—)*S; extend to the isomorphism of
8 onto >*8;. Then we also write § = }™*8;. In this case every element.
s # e of S has the unique, modulo the ordering of the factors, representa-
tion 8 =81..: 8y where n>1, 8;€8;, and i(j) #i(k) for ¢ #Fk;
i k=1, ,n If {J, K} is a non-trivial partition of I, then, clearly,
'8, is the direct sum of >*8; and 2 8y .

iel jed

LEMMA 4. Let S be the direct sum of s two countable subsemigroups
S, and 8, containing the identity element ¢ of 8. Suppose, in addition, that
S acts by s—>F, on B and that

(1) each F, is induced by a two-sided non-singular transformation,.

(2) 8, is pointwise induced by two-sided non-singular transforma-
tions f,, 8 €8,,

(3) f, 18 the identity transformation of X.

Then there exist two-sided nmon-singular transformations f,,r e S—8,,
such that S is pointwise induced by the action s—f, on X.

Proof. By Lemma 1, §, is pointwise induced by some action ¢{—g,
on X. By the remark preceding Lemma 3 we may assume that all g, are
two-sided non-singular and, by the remark at the end of Section 4, that
g. is the identity transformation. It follows from Lemma 3 that there
exists an action t— f, of §;, such that f; induces F,for ¢t € 8,, and f, f, = f, f,
for s €8y, t€8,. Bach element re8—(8,US,) has a unique repre-
sentation as the product of an element s from S, and an element ¢
from 8,. Putting f, = f, f; we obtain the required action of 8 on X.

THEOREM 3. Let 8 be the direct sum of N, countable semigroups S,,
a < w,, containing the identity element e. Suppose that S acts by s—~F, on B
and that

(1) each F, 1is induced by a two-sided mon-singular transformation,

(2) F, is the identity map of B.

Then 8 is pointwise i nduced by two-sided non-singular transformations.
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Proof. For any 0 < 1< w; we put
L]
Tz = 2 S,,

vy<4
.80 that T, < T, for » < A. The construction of the required action of S
proceeds by transfinite induection.

1° First step. From the remark preceding Lemma 3 it follows
that T, is pointwise induced by some action s—f,, s € T,, where the f,
-are two-sided non-singular transformations and f, is the identity on X.

2° Non-limit step. Let 0 < 1 < w, and supposc that T, is point-
wise induced by s—f,, 8 € T,. Since T is a countable semigroup, we may
apply Lemma 4: putting S, =T,,8, =8,, and § =T, ,, we obtain
.an extension 8— f,, 8 € T, ,, of the action of T';, with two-sided non-singu-
lar transformations f,.

3° Limit step. Let A< w, be a limit ordinal. If for any 0 < v < 2
the semigroup 7', is pointwise induced by the already defined two-sided
non-singular action s—f,, 8 € T',, then the action s—f,, 8 € T;, induces T,.

Since § =T, , the action s—f,,seT,, satisfies our theorem.

6. Groups of automorphisms. A one-to-one transformation f from X
onto X is called a point automorphism if both f and f~! are #-measurable
.and non-singular.

LEMMA 5. Let a group G act automorphically on B. If G (regarded
-as a semigroup) is pointwise induced, then it 18 pointwise induced by point
-automorphisms of X.

Proof. Let g—f,, g € G, be any action that induces G. We may assume
that f, is the identity on X by putting, if necessary, f,(x) = v whenever
Jo(x) # z or x ¢ D(f,). Such a modification does not spoil the action of @
and we get

fafa"l = fe = fa"lfa’

80 that f;! = f,-1.

The following is a consequence of Theorem 3 and Lemma 5:

THEOREM 4. Let G be the direct sum of N, countable groups. Suppose,
in addition, that G acts automorphically on B by g—>F,. If all automor-
phisms F, are pointwise induced, then @ is pointwise induced by an action
g—>f,, where all f, are point automorphisms of X.

In particular, using the Hamel bases for linear spaces over the field
.of rational numbers, we obtain

COROLLARY 1. Let us assume the continuum hypothesis (N, = 2%¥0),
If X is a Borel space and if G = R" acts automorphically on B for some
n=1,2,...,8y, then G is pointwise induced by point automorphisms.
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7. Lower density. If 2: B—>4# is a function sa,tlsfymg

1) [2(a)] = a,

(2) 2(anbd) = 2(a)ND(b)
for all @, b € B, then it is called a lower density for B. The general problem
of the existence of a lower density was studied by von Neumann and Stone
in [5].

For any b € B we denote by Eb the o-endomorphism of B defined by
Ey(a) = anb, a € B. The multiplicative semigroup (semilattice) B acts
on B by b—~>E,.

THEOREM 5. The following conditions are equivalent:

(i) the multiplicative semigroup B acting by b—E, on B i8 pointwise
induced ;

(ii) there is a lower density 2: B—3%.

Proof. (i) = (ii). Let B be induced by an action b— ¢, on X. We define
2(b) to be the range R(e,) of ¢,. Since ¢,6, = ¢, and # is separable, we have

2(b) = {weD(e): () =} € B.

Now it suffices to show (2). From the obvious inclusion E(e,e,) < E(e,)
and from the commutativity of B it follows that

E(es6,) < E(es) N E(ep).

In the opposite direction, for any x on the right-hand side of the inclu-
gion we have ¢,(x) = ¢,(®) = v 80 that # = (¢,6,)(2z) and = € R(e,¢6p).

(ii) = (i). For any b € B we denote by ¢, the identity transformation
of 2(b) € #. From the definition of the lower density it is clear that b—e¢,
is the action of B on X.

Theorem 17 of [6] guarantees the existence of a lower density for B
provided the continuum hypothesis holds. Therefore, under the continuum
hypothesis, the semigroup B acting on B is pointwise induced. Moreover,
if X is an uncountable Borel space and # the o-ideal of countable subsets
of X, then from the isomorphism theorem for Borel sets, from Theorem 18
of [6], and from the remark on p. 378 of [5] it follows that the continuum
hypothesis is equivalent to the existence of a lower density. Thus we get

COROLLARY 2. Let X be an uncountable Borel space and # the o-ideal
of its countable sets. The semigroup B acting by b—E, on B i3 pointwise
induced if and only if the continuum hypothesis holds.

8. Sub-Markov operators. Let m be a positive o-finite measure
on # and let S be the o-ideal of zero sets with respect to m. A linear op-
erator P acting on L,(m), the space of (equivalence classes of) integrable
real functions on X, is called sub-Markov if

(1) Pu> 0 for u >0,

(2) IPI< 1.

3 — Colloquium Mathematicum XXXVIII.1
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The adjoint operator P* acts on the space L, (m) of equivalence clas-
ses of essentially bounded real measurable functions on X. The operator
P is called deterministic if

(8) P*1, is a characteristic function for any 4 e %.

A sub-Markov operator P is called Markov if

(4) P*1 = 1.

For more details on sub-Markov operators see, e.g., [2].

It is a routine to show that every deterministic sub-Markov operator
defines a o-endomorphism of the ring B. It is also clear that this represen-
tation is one-to-one. Conversely, every o-endomorphism F of B induces
a deterministic sub-Markov operator P. This can be shown by putting
P*1, =15 if F([A]) = [B] and by extending P* to the whole of L_(m).
The operator P* so defined is indeed an adjoint of some operator P. To
show this we take a u, 0 < u € L,(m), and we cehoose arbitrarily a repre-
sentative A’ in F([A]) for any A € B. It is easily seen that the function p
defined on Z by

is a finite measure on £, absolutely continuous with respect to m. There-
fore, by the Radon-Nikodym theorem there exists a function v,
0 < v e L, (m). such that

p4) = f'vdm.
4

The opecrator P taking # into v extends to a sub-Markov operator
on L,(m); its adjoint is P*.

The above discussion shows that there is a natural one-to-one cor-
respondence between semigroups of o-endomorphisms of B and semigroups
of deterministic sub-Markov operators on L, (m). Similarly, there is a nat-
ural correspondence between groups of automorphisms of B and groups
of invertible deterministic Markov operators (and also groups of auto-
morphisms of the Banach algebra L, (m)). In the last statement the word
“deterministic” can be dropped, as it is shown by the following lemma whose
proof was kindly communicated to us by Professor S. Gladysz.

LeEMMA 6. If P is invertible on L,(m) and both P and P~' are sub- Mar-
kov operators, then P is a delerministic Markov operator.

Proof. P is a Markov operator since it is isometric. Let A € # and
P*1, = h. It suffices to show that h is a characteristic function. For
any positive integer n we have

1z <nh, where B, = {x:h(z)>1/n}.
Thus,
0< (P') Mg, /n< (P*)'h =1,
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so that (P*)™'1p <1, since (P*)™'1z < 1. Letting n—>co we obtain
(P '15<1,, whereB = {x:h(z)> 0}. .
Multiplying both sides of the last inequality by P* we obtain
1, <P*1, =h<1,

the last inequality in this chain being a consequence of k < 1.
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