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1. Introduction. We concern ourselves primarily with partitions of a
finite group into cosets. Precisely, let

(1.1) {8, 84, ..., &S}

be a partition of G into cosets of the subgroups S,, ..., S,. Our interest here
is in obtaining lower bounds for ¢. In order to describe the known results we
introduce a number-theoretic function. For any natural number k with prime
factorization

(1~2) k = r] pﬂj
j=1
define
1
(1.3) fk)y=1+ Z a;j(pj—1).
j=1

Mycielski and Sierpinski [4] conjectured that if G is Abelian, then necessarily
(1.4) t = max f([G:S;]).

1sist

In the special case where G is cyclic, Znam conjectured that
t
(15) t> f([G: N 5])

(Observe that (1.5) is stronger than (1.4).) This case — G being cyclic —
corresponds to disjoint covering systems of the integers into residue classes.
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Here we can always choose G in such a way that

t

N S; = {e}.

i=1
Korec [3] proved that in general if (1.1) is a partition of G and if the
subgroups S, ..., S, are all normal in G, then (1.5) holds. He also observed
that in fact under this normality assumption

(1.9 (> 1+ ¥ (H_,:HI-1),
i=1

where

G=Hy,oH,>..oH,=[\S§;

t
is a composition series from () §; to G. (It follows from the Jordan-H&lder
i=1

Theorem that this lower bound is independent of the composition series. If G
is solvable, then this bound (1.6) coincides with (1.5) — otherwise it is
sharper.) Finally, Korec also shows that if G is infinite and (1.1) is a
partition of G into cosets of normal subgroups (with t' < 00), then necessarily

[G: f\ S;] < o0

and (1.5), (1.6) hold.

To continue our description of known results we introduce the notion of
a minimal coset cover. If (1.1) is a covering of G by means of its cosets, we
say it is minimal if the removal of any one coset g; S; would result in G not
being covered by the remaining cosets a;S;. Znam [5] showed that if (1.1) is
a minimal coset cover of a cyclic group G, then (1.4) holds. Finally, in [2]
Berger et al. extended Znam’s lower bound from (1.4) to (1.5) (under the
same conditions — that (1.1) be a minimal coset cover of a cyclic group G).

ExampLE 1.A. This exemplifies a minimal coset cover of an Abelian
group for which (1.5) fails. Take G = 3 x4, and set

Sl = {(0’ 0)’ (09 l)a (09 2)}a SZ = {(0’ 0)’ (la 0)’ (29 0)}9
S3 = {(Os 0)’ (l’ 1)’ (2’ 2)}a S4 = {(0’ 0)3 (19 2), (2a 1)}

Then |S,, S5, S3, S;} is a minimal coset cover of G, but
4 -
f([G: 'Ol S))=r0) =5.

ExampLE 1.B. This is due to Korec [3]. It exemplifies a coset partition
of a group for which (1.5) fails. Take G = .5 (the permutation group on 3
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elements), and set
S, =1e,(12)}, a, =e,
S, =le,(13)}, a,=(23),
S3=1(23)}, ay=(13).

Then !a,S,,a,S,, a;S;! is a coset partition of G, but
2 ) p

/([c: 51 s])=1(6 =4.

This paper contains three parts. In Section 2 we prove the Mycielski-
Sierpiniski bound (1.4) for any coset partition (1.1) of a finite solvable group
G. In Section 3 we prove the bound (1.5) for a minimal coset cover of G
assuming that either G is cyclic or else that G is of square-free order and the
subgroups S; are normal. The cyclic group case is really our result (see [2],
3.II), but we prove it here using different techniques altogether. Finally, in
Section 4 we use the techniques of Section 3 to provide an alternative proof of
Corollary 2.IV(a) of [2], involving minimal product set covers.

2. The Mycielski-Sierpiniski bound. Our main result in this section is the
Mycielski-Sierpinski bound (1.4) for coset partitions (1.1) of a finite solvable
group G.

THeOREM 2.1. Let G be a finite solvable group and let (1.1) be a partition
of it into some cosets. Then (1.4) holds.

The proof relies on the following

LemMA 2II. Let G be a finite group and let K, S be subgroups of G.
Assume that either (a) or (b) holds:

(@) K is a maximal subgroup of G and at least one of K, S is a normal
subgroup of G; _

(b) K is a maximal normal subgroup of G and S is a normal subgroup
of G.

Then either S < K or else S "bK is a coset of SNK for every beG.

Proof. Let b, K, ..., b, K be the distinct cosets of K, ordered so that
the first r of them are the ones that intersect S. Then

2.1) S-K =) bK.
i=1

Observe that
(2.2 KcS§S:KcgG.

(@) Since K or S is normal, S-K is a subgroup of G, and since K is
maximal, we conclude from (2.2) that either S':K =K or S:K = G. In the
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first case S < K; and in the second case, by (2.1), r = m. This is our desired
conclusion.

(b) Since S and K are both normal, S-K is a normal subgroup of G,
and since K is maximal normal, we conclude as above that either S =« K or r
=m.

Remark. In words, Lemma 2.II demonstrates that any coset aS of G
either lies entirely within a single coset of K or else intersects every coset of
K .by exactly |S|/m elements, where m is the index of K. Of course, if m t|S]|,
then necessarily the first possibility holds, From this lemma it follows at once
that if (1.1) is a coset partition of G and if S, < K, then each coset b; K
entirely contains (at least) one of the cosets from (1.1). This result is due to
Korec ([3], Lemma VI). (Although Korec assumes that the S; are all normal
subgroups, this is not necessary when K is both maximal and normal.)

Proof of Theorem 2I. We use induction on |G|. If |G| =1, then
necessarily t = 1 and S; = G. Thus (1.4) holds. For the induction step we let
K be a normal subgroup of G with prime index p, which exists by virtue of
the solvability of G. It suffices to show that ¢t > f([G:S,]), where S, is the
first subgroup in (1.1). By multiplying through (1.1) with a; ! we can assume
that a; = e. Order the cosets in (1.1) so.that the first ¢’ of them intersect K.
The induced coset partition of K

{a;S; nK: 1 <i<gt}
satisfies the induction hypothesis since K is solvable, and thus -
t' 2 f([K:S; nK]).

According to Lemma 2.II we need to consider two cases.

Case A. S, < K. It follows from the Remark after Lemma 2.II that
each coset of K entirely contains some coset a;S;. Thus t—t' > p—1, and

t 2 p—1+f([K:S,)) = f([G:S,)).
Case B. |S, nK| =|S,|/p. Then [K:S; nK] =[G:S,], and thus
t=>t 2 f([G:S,)).

3. Bounds for minimal coset covers. Let (1.1) be a minimal coset cover of
G and denote by E,; the set of elements in G covered exclusively by a; S;. The
minimality condition, then, amounts to assuming E; # @, 1 <i<t To
conserve notation we may as well assume that

(3.1) ek, 1<i<t.

THeorReM 3.1. If G is either a cyclic group or else of square-free order,

and if the subgroups S; in the minimal coset cover (1.1) are all normal, then (1.5)
holds.
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A key step in proving Theorem 3.I is to show that if K is a maximal
subgroup of G which is normal in G, and if S, < K, then every coset of K
entirely contains (at least) one of the cosets from (1.1). This is always the case
where (1.1) is a coset partition of G, as mentioned in the Remark following
Lemma 2II. It is not true in general, though. In Example 1.A consider K
= §,. Neither if the cosets (1, 0)+ K, (2, 0)+ K contain any of the subgroups
S5, 83, S,.

Lemma 3.I1. Let G be either a cyclic group or else of square-free order.
Let K be a maximal subgroup of G which is normal. Let (1.1) be a minimal
coset cover of G and assume that the subgroups S; are all normal. If S, c K,
then every coset of K entirely contains (at least) one of the cosets from (1.1).

Proof. Assiime, by multiplying (1.1) through with a7 !, that a, = e€E,.
Let p|[G:K] and let L be a p-Sylow-subgroup of G. Since L& K, it follows
from Lemma 2.II that L intersects every coset of K. Let bK, b¢ K, be any
one of these cosets. Choose ceLNbK and let a;S; be a coset from (1.1)
containing c. Since §; < K, we have i # 1. We first show that

(3.2) IL] ¥1Sil-

Otherwise, if |L]||S;|, then S;, being normal in G, would contain every p-
Sylow-subgroup, including L. This would imply that

(3.3) L=cLccS;=q;S;,

and we would arrive at the conclusion e€ag;S;, conflicting e€E,.
If G is cyclic, then |K| = |G|/p. Thus

IL| ¥1Sil =1Sil|IK| = §; = K =g4; §; < bK.

If G is of square-free order, then |L| = p, and by the Remark following
Lemma 2.II we see that

pMS|=S; cK=aqS, cbK.

Proof of Theorem 3.1. We use induction on |G|. Again the case |G|
= 1 is immediate, so we proceed to the induction step. Assume as above that
a, =e€E,. If S, =G, then t =1 and we are done. Otherwise, if S; # G, let
K be a normal subgroup of G with prime index [G:K] = p, containing S, . It
exists since G is solvable and S, is normal. Order the cosets in (1.1) so that

@S, nK: 1<i<t)

is a minimal coset cover of K. Since K is either cyclic or of square-free order,
and each §;~K is normal in K, we can use the induction hypothesis to
arrive at the bound

(3.4) ty = f([K:K,]),
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where

We now.define numbers t, <t, <... <ty and subgroups

"l
(3.5) K,= (NS, 1<n<N,
i)

inductively as follows. Suppose we are at stage n, having defined ¢,, ..., ¢,. If

tn
Kn = n Si’
i=1

we set N =n and stop. Otherwise we let S, be such that S, # K, and
consider the coset g, K,,. Since g, €E, and K, c §;, 1 <i <t,, it follows that

(3.6) a,‘K,,('\a,'S,- =®, 1 sist,’.
Therefore we can order the cosets in (1.1) so that k =¢,+1 and
:aisi makKn: tn+1 i< tn+1:

is a minimal coset cover of g, K,. By multiplying through with aq, ! we arrive
at a minimal coset cover of K,, and thus we conclude from the induction
hypothesis that

(3°7) tn+l—tn >.f([l(n:1<n+l])'

Since the sets K, are reduced at each stage, this process terminates at
some stage N where

IN

KN = m S,-.
i=1

Each subgroup K; lies inside K, so it follows from Lemma 3.II that
(3.8) t—ty =2 p—N.
Thus, putting K, = K, we have

t

(3.9) t2p-N+ ¥ f([K.-1:K,D = f([G: N 5]

i=1
Since the conclusion of Lemma 3.II holds for any group G when (1.1) is
a coset partition, we can use the same proof above to prove Korec’s theorem.

THeoReM 3.III. Let G be any finite group, let (1.1) be a coset partition of
G and let the subgroups S; all be normal. Then (1.6) holds.

A seemingly different application of the proof above is given in the next
section.
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4. Product set covers. A product set P in Z" is any finite nonempty set of
the form

4.1) P=P;x... xP,,

where P,, ..., P, < Z. The set P; is referred to as the i-th projection of P,
denoted by

4.2) P,=m(P), 1<i<n.

We define the dimension of P as
4.3) dim(P) = |{i: |m;(P)| > 2}|.

If Rc P is also a product set, we write
44 index(R:P) = i: m;(R) = n;(P) and |n;(R)| = 2].

We will be working with a fixed product set P in what follows, and when
referring specifically to it we shall simply denote this index set by index (R).
The product set R< P is called a cell of P if |n;(R)) =1 whenever
i¢index(R). A one-dimensional cell is also called a line.

Let R < P be a product set and let C = P be a cell. If RN C # O, then

4.5) index (R N C:C) = index (R) nindex (C).
Furthermore, if index(C) < index(R), then
4.6) RNC#QO=CcR.

A product set cover of P is a finite family of product sets |R,, ..., R,},
each a subset of P, which covers P. For such a cover we denote by E; the set
of points in P covered exclusively by R;, and we say the cover is minimal if
E+#0,1<i<t

THEOREM 4.1. Let |R,, ..., R} be a minimal product set cover of the
product set P. Then

@.7) (> dim(P)—| () index(R)|+1.
i=1

Proof. Choose points g, €E;, 1<i<t. We use induction on d
=dim(P). If d =1, then this theorem follows from the observation that
either ¢t > 2 or else t =1 and |index(R,)| =d = 1. We proceed now to the
induction step. If R, = P, then t = 1, |index(R,)| = dim(P) and we are done.
Otherwise, if R; # P, let C be a (d— 1)-dimensional cell of P containing a,
for which index(R,) < index(C). Order the sets R; so that

IRRNC: 1 <i<t,)
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is a minimal product set cover of C. Set

3
I, = () index(R;).
1

i

By the induction hypothesis, using (4.5) we have

>

L5
4.8) t, =(d—1)—| N index(R; nC:C)|+1 = (d—1)— I, +1.
i=1 '

Let L be the line containing a, with index complementing index(C):
4.9) index (L) = index (P)\index (C).

Any product set R; # R, intersecting L at a point other than a; cannot
intersect C — otherwise it would intersect a,. Since L & R, , this shows that

(4.10) t—t, > 1.

t
If I, were equal to () index(R;), then our result (4.7) would follow now from

i=1
(4.8) and (4.10).
We now inductively define numbers ¢, <t, <...<ty and cells
Cy, ..., Cy with

tn

@4.11) index(C,) = I, = () index(R), l1<n<N-1.
i=1

Suppose we are at stage n, having defined ¢,,...,t, and C,, ..., C,_,. If

I, = () index(R,),
i=1
we set N = n and stop. Otherwise, let R, be such that index(R,) 7 I, and let
C, be the cell containing g, with index(C,) = I,. Since g, €E,, it follows from
(4.6) that

4.12) RNC,=0, 1<i<t,.

Therefore, we can order the product sets R; so that k =¢,+1 and
{RRNC,: t,+1 <i<tyy,}

is a minimal product set cover of C,. Thus we conclude from the induction
hypothesis, using (4.5), that

tn+1

(4.13) ty+1—t, = dim(C)—| (N index(R,nC,:C,)|+1
. 1

i=t,+

=l =1l +1.



MYCIELSKI-SIERPINSKI CONJECTURE 249

Eventually, at stage N,

t
Iy = () index(R)).

i=1

Thus, using (4.8) and (4.13), we get
N-1

(4.14) t?tN= z (tn+1-t”)+tl ?(d'—l)—IINI'*‘N.
n=1

This establishes (4.7) when N > 2. The case N =1 was already handled
above.
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