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1. Introduction. In [7] L. Saloff-Coste introduced a new class of
operators T, on a locally compact Vilenkin group G, where T, is determined
by a function ¢ : G x I' — C (I is the dual group of G). The operators
T, are the natural analogue on G of the pseudodifferential operators on R™
belonging to the Hérmander class S}';. The main result in [7] is Theorem
VI.7 in which Saloff-Coste proves that the operators T, are continuous from
L?(G) to LP(G), 1 < p < oo, when o € §7%(G), with 0 < p < 6 < 1
or0 < p=46<1and -m > (1-p)|1/p—1/2|. This theorem is the
analogue on G of various results for pseudodifferential operators on R™ that
are due to Calder6n—Vaillancourt [1], C. Fefferman [2] and Paivirinta and
Somersalo [6].

In this paper we continue the work of Saloff-Coste. We consider here
pseudodifferential operators T, on G where the function o is a function
of only one variable, ¢ : I' — C. In this case the continuity of T, is
equivalent to the fact that ¢ is a multiplier. In Section 2 we discuss the
continuity of the operators 7, on the Hardy spaces H?(G),0 < p< 1. In
Section 3 we consider the continuity of T, on certain power-weighted Hardy
spaces H?(G). Our main result in this section is obtained by means of an
application of a multiplier theorem for H2(G) spaces obtained earlier by the
present authors.

In order to state our results more precisely we first introduce some no-
tation; by and large, we shall use the same notation as in [4] or [5] and
the reader is referred especially to [5] for more details. Thus, G will denote
a locally compact Vilenkin group, that is, G is a locally compact Abelian
topological group containing a strictly decreasing sequence of compact open
subgroups (G)32 so that

(i) sup{order G, /Gn41 :n € Z} < 00,
(ii) U oo G = G a0d (32—, G = {0}.

n=-—00

The Haar measure on G is denoted by p and p is normalized so that
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#(Go) = 1. We set u(Gy) = (my,)~1. Let [0| = 0 and for z € G, \ Grny1, let
|z| = (m,)~!. The dual group of G is denoted by I" and we set

I'n={yer:y(z)=1forallz € G,}.
The Haar measure on I', denoted by A, is chosen so that A(Ip) = 1. Then
ML) = (u(GR)) ™ =m, foralln € Z. Let |[y| = my, if ¥ € I'ny1 \ I
and let |yo] = 0, where vo(z) = 1 for all z € G; furthermore, we set

(7) = max{1,|v]}.

The Herz spaces K (a, p, q) and the generalized Lipschitz spaces A(a,p, q)
are defined in [4] or [5]. The following result will be used later on (see [4,
Theorem 1%*)).

THEOREM O. Leta € R, 1 < p < 2and 0 < q £ 0o. Then
(A(e, p,q; )Y — K(e,p',q;G). Moreover, for every f € A(a,p,q; ") we
have

> 1/q
1Vl ks aser = (3 ()1 xGGian 1)?)

l=—o00

ke /
<c( 3 tmyessuplires - flg € € 1),

l=—o00

where ¢ f(7) = f(v - £)-

We now define the constant coefficient pseudodifferential operators on
locally compact Vilenkin groups. This definition is the one variable version
of Definition II.4 in [7).

DEFINITION 1. Let m € R and p > 0. A function o : I' — C belongs to
Sy if o € L*°(I') and

(i) there exists a C > 0 so that for all y € I', |o(7)| < C({(y))™,
(ii) for each k > 0 there exists a Cx > 0 so that for £, € I' with
|€] < () we have

lo(y = &) = a(1)] < Cl€|*({r))™ "
For 0 € S we define the operator T, (formally) by
T.f(z)= [ oMFn(2)d\(7) = (¢))¥(2).
r

Thus, formally, T, is a Fourier multiplier operator and ¢ is a Fourier mul-
tiplier.

2. Multipliers on Hardy spaces. In this section we prove a theorem
which is a version on G of Theorem 1.1 in [6]. Although in [5] we character-
ized the Hardy spaces on G only in terms of (p, 00) atoms, thege spaces can
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also be characterized in terms of (p,2) atoms; we shall use this fact without
further elaboration.

THEOREM 1. Let 0 < p < 1and 0 < p < 1. Ifo € 5% for some
p > (1 - p)(1/p - 1/2), then o is a Fourier multiplier on H?, that is,
o € M(HP).

Proof. We shall assume that u = (1 - p)(1/p — 1/2). Let a be a
(p,2) atom such that suppa C G, for some n € Z. This implies that @ is
constant on the cosets of I'; in I’ so that @(y) = 0 for all ¥ € I',. Next let
o = oxr, + oxr\r, = 01+ 02. Then ||(6@)V||; = ||lo@||2 = ||o2G]|2. We now
distinguish two cases: n > 0 and n < 0.

(i) Assume n > 0. If vy € I, then (7) = |y| > my, so that

1(58)"Il2 < llozlloollalls < C(ma)(ma)#=1/2 = C(mp)1/p=112)

Next, consider ||| - |®(2@)V||; for some b > 0. We have, according to Theo-
rem O,

- 1°(028)" Iz = lI(028)" | (b.2.216)

o R R 1/2
< (X (m)*sup{lire(o:@) - oz} : € € I1})

l==o00

=(E It

l=-o0 I=[np]+1

2
= (A1 + A2)'/?,

where [np] is defined as in (7, Section 1.5], that is, if p = 0 then [np] = 0 for
all n > 0, whereas for 0 < p < 1 we require that
H(Ginp+1) < (B(Gn))* < (Glny)) -

Note that n > [np] for n > 0. Also, if ] < [np] and £ € I then £ € I, so
that for every v € I' the elements vy — £ and v belong to the same coset of
I',,. Consequently,

(028)(y — §) — (928)(7) = (02(7 — &) — 72(7))a(7) -
Thus, for each of the terms in the sum in A; and any k > b we have
sup{||re(o2@) — 02@|3 : € € I}
=sup{ [ loa(v =€) - oa(MPla(r)IPdX(7): € € I}
r\r,
< Ca(mu)*(mn)2B+P9|[@))] < CF(my)?"(my, )20 /P=112=)
Therefore,

[ne]
Ay < CHma /=12 37 () ~0=) < G2 (m, 2A1/P1/2-),

l=-=0c0
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To estimate A; we observe that, since |o2(7)] < ({7)) ¥,

(o o]
Ay <4 ) (m)?|o:d)3
I=[np]+1

<C i (ml)-2b(mn)2p(1/p-1/2) < C(mn)h(l/p-l/?—b) .
I=[np]+1
Thus we see that if b > 0 then
- °(0@)"|l2 < C(my)P(/P=1/2=8),
(ii) If n < 0, then
1(62)l2 < llellwllallz < C(mn)!/P=1/2.
Also, an argument like that used in (i) shows that for > 0,
11+ 1°(0@)"[lz < C(my)M/P-1/270,
Thus in both cases we see that if we choose b = 2(1/p — 1/2) then
@@V 11 - 1*(ea)V I < C.

Furthermore, it follows easily from the inequalities just proved that (o@)V €
LY(G). Therefore, we have

J (08)"(z) du(z) = (o8)(0) = 0.
G

Hence (see [3, Definition II1.7.13]) (¢@)V is a (p,2,b) molecule centered at
0 € G for b = 2(1/p — 1/2). We shall from here on denote (0@)V(z) by
M(z) and we shall now show that M € HP by proving that M can be
decomposed in a suitable sum of (p,2) atoms. Like before, we shall give a
detailed proof only for the case n > 0; the case n < 0 is similar but easier.
First we define sets By and D by B_; = 0 and, for £ > 0, By = Ging)-k
and Dy = By \ Bi—1. Next we define functions My, k > 0, by

M(z) = (WD)} [ M()du(t))x,(2)-
Dy

Then
IMoll3 < Ml < C(my)?M/2=2/D
and, for k > 1,

1Ml S(m[""l-k)b(m[m»l—k)—b( f IM(:i:)|2dlt(:t))l/2
D,

< WBN*( J LPMEE du)"”
Dy
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< C(p(Bx))~b(my)P(1/p=1/2=0)

Now we decompose M(z) as follows:

M(z) =) (M(z) - Mi(2))xp,(2) + Y Mi(z)xD, (z)
k=0 k=0
=3 (M(2) - Mi(2))x4 ()
k=0

P wmao) (X -e)

k=1 G\Bi-:

= ax(z) + ) bi(z).
k=0 k=1

We have
laolla < 2C(ma)P /P12 < C(u(Bo))~(mp)PH/P=1/2-1
and, for k > 1,

ol <2( [ IM@)Pdu(@)"” < CuBL)*(ma)ptso-1r20).
Dy,

Thus, if af(z) = (Jlakll;!)ar(z)(u(Bx))~(1/P=1/2) then each a} is a (p,2)
atom and Y 72, ak(z) = Y pep Akar(z), where

S AP < C Y ((ma) V1 (B rm 2y

k=0 k=0
m (1/p-1/2-b)p oo
< CZ( (o] ) < Cz2kp(1/p—l/2-b) <C,
k=0 \ "nel-k k=0

provided b > 1/p — 1/2. Next, to find a suitable estimate for the ||bi||2 we
first observe that for every k > 1,

f |M(z)| dp(z) < ( f |x|2b|M(1’)|2du(a;))1/2
G

G\Bi -
1/2
x( [ el du())
G\B; -
< C(m )p(l/p—l/z—b)(p(B ))(—2b+1)/2

provided b > 1/2. Also, I(&(Dx))xp, |l2 £ C(u(Bx))~Y/2. Thus, if b >
1/2, then

6kllz < C(my )P /P=1/2=0)(( B )0,
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If we define b} by

bx(2) = (lIbkllz*)bx(z)(p(Bx))~ /77112
then b} is a (p,2) atom and Y 3o, bi(z) = Y 5, Vkbi(z), where

D lul? = D (llbwllz(u(By)) /=12y
k=1 k=1

©0
< C Y ((ma) VP2 2=0(u(By )P~ 127ty < o0,
k=1
whenever b > 1/p — 1/2. Thus M is a sum of multiples of (p,2) atoms and
||M||r» < C with C independent of a. Consequently o € M(HP).

3. Multipliers for power-weighted Hardy spaces. In [5] the
present authors proved a multiplier theorem for power-weighted Hardy space
H?. We restate the theorem here, together with two of its corollaries (see
[5, Theorem 4.7 and Corollaries (4.8) and (4.14)]).

THEOREM O0Q. Let0 < p < 1. If p € L*™(TI") satisfies

s1’1‘p(mk)l_p z ||(¢j)v||?((1/p—1/r.r,p) < oo
i=k

for some r with 1 < r < oo then ¢ € M(HE) for —1+p/r < a < 0. Here
W = (PXI}.‘.]\F,' forj € Z‘
COROLLARY OQ1. Let0 < p< 1. If ¢ € L™(TI") satisfies

Slllcp(mk)” P )Wkt fp-1/rmp) < 00

for some r with 1 < r < oo then ¢ € M(HE) for -1+ p/r < a < 0.
COROLLARY 0Q2. Let 0 < p< 1. If p € L®(T') satisfies

s‘ip(mk)llp-l-l-e”(‘Pk)v”K(l/p-l/r-i-e,r,co) < oo

Jor some ¢ > 0 and r with 1 < 7 < oo, then ¢ € M(HP) for -1+ p/r <
a<0.

As an application of these results we prove the following.

THEOREM-2. (i) Let0<p<land0<p< 1. Ifu=(1-p)1l/p-1/7)
for some r with2 < r < 0o and if 0 € S;* then 0 € M(HE) for -1+ p/r <
a<0. .

(ii) Let0 < p<land0< p< 1. Ifu=(1-p)1l/p-1/2) and if
o€ S, theno € M(HE) for -1+ p/2<a<0.
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Proof. Let 0 = oxr, + oxr\r, = 01 + 02. We first prove that o1 €
M(HZ) by applying Corollary 0Q2. It follows from Theorem O that for
any k<0and 2<r < oo,

o)V Il k(1 /p=1/r41,m,00)
< sup(my)~ /=D sup{||reof — of|l, : €€ I}
!

Forl<k <O0and§ € I wehavey—§ € I't41\I'x ifand only if ¥ € Ixyq\ k.
Thus, taking K = 1/p — 1/r + 1 we see that for £ € I},

rl

' /
lreot ol = ([ lokr-© -kl aAm)

T4\
< Chlel*({(r) "W+ (m )™ < Cp p(mg) /P (my )T
because () = 1 for ¥ € I'k41 \ I'x C Ip. Therefore, for I < k < 0, we have

(my) =P~/ sup{||reof — ofllw : € € [N} < Cp (i)™
< Cp,r(mk)—l/P J
because my < 1 and —1/p < 0 < 1/7'. On the other hand, if { > k and
£ € I; then
ot — ofll < 2llofll < C(mi)/™,
so that we again have
(my)~ (/P4 sup{|ireof — ofll : € € I} < C(my) M7,

Thus we see that

Sll];p(mk)llp”(a{c)v”K(l/p—l/r+l,r,oo) <C ’

and it follows from Corollary OQ2 (with ¢ = 1) that o, € M(H?) under
each of the assumptions of (i) and (ii).

In order to prove that o2 € M(H?) we need to distinguish between parts
(1) and (ii) of the theorem.

(i) Given a with -1 + p/r < @ < 0, choose t so that 2 < ¢t < r and
-14+p/r< —-14p/t < a. Also,let § = (1 - p)(1/t-1/r); then p >6>0.
For each k£ > 0 we have

(o o]

”(ag)v”}’((l/p—l/t,t,p) < Z (ml)-u/p-lmp S“P{”Tfaz - 0'2” £ e}

l==00

= Z +Z Z = A1+ A+ A;.

l==00 I=k+1
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For | < k and € € I} we have (taking k = 1/p—1/t+1)
, 1/t
e} — oklle = ([ lok(y = &) = oI dA(7))
r

< C',;I{I"(‘y)‘(#-l-lm)(mk)l/t'
< Cp,t(mz)l/”'l/"“(m,,)-u-p(llp-l/t+1)+1/t'
= Cp,t(ml)llp—I/H'l(mk)‘(llp—l)-p—6 .
Thus
0
A < C,f,t(mk)P—l-pp-Gp Z (my)P < C:'t(mk)p—l_ap/2 ’

I=—00

because X:(,L__m(m;)"J <9 _(1/2) < C and (my)~°P~%P/2 < 1 since
my > 1 and —pp — §p/2 < 0.
Similarly, for any ¢ > 0 we have

k
Az < E C? p (my)~(/P=110p (g Y(A/p=1/t4)p (py )(=1/P+1=pe=b)p

=1
k
S CP,1 D (my)P(my)P1mrer=tr
=1
< Cfp t(mk)p—l-6p/2(mk)(1—»p)ep—ﬁpldk(mk)-6p/4 ]

Choose € > 0 so that (1 — p)ep — §p/4 < 0. Then (m,;)(1-P)eP—5p/4 < 1 for
all £ > 0. Next, choose N € N so that if £ > N then k(m;)~%?/4 < 1. Let

C = C?, (1 + max{k(mi)~%/4 : 1 < k < N}).
Then we have for all £ > 1,
Ay < C(my)P1-%7/2
Finally, for A3 we have

o0
Az < ) (my)~(/e=110p0p 10l 1,
I=k+1

(o ]
<C z (my)~/P=1/0P () =P (g )P I
I=k+1

< C(mk)”‘l“"’ < C(mk)p—l-ﬁpﬂ ,
because up > p/2 and m; > 1. Thus we may conclude that for every k > 0

”(azl")v"’;((1/p_1/t,t,p) < C(my)P=1-%/2,
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Therefore,

sup(’mk)l pz "(02)VIIK(1/p—1/t tp) S CS“P(mk)l P E(m )Pt ik
i=k =k

< Csup(my)~%?? < C,
k>0
and, according to Theorem OQ, this implies that o, € M(HE). Thus we
see that o € M(H2) for -1+ p/r < a <L0.
(i) f0<p<1,0<p<1land -1+ p/2 < a <0, we have for every
k>0,

IO sy € 3 ()48 suplireak — oblE : € € T3}

l=-o00
oo
= Z Z .+ Z...=B1+B2+B3.
l=—00 I=k+1

If ] <k and € € I'| we have, like in the proof of (i), for any £ > 0,
lIreas — o5llz < Culél*({))~#~*%(ms)/?
< Cp(m) /P12 () )—#—r(1/P+1/2)+1/2
< Cp(m,)llwrl/Z(mk)—(llp—l)—p .
Thus,

0
By < CH(myP™' 7P ) (my)P < Cplmy )P~

l=-00

because (mi)~?? < 1 for k > 0 and E?=_°°(m;)" <Cfor0<p<l1.
Now, choosing k = 1/p+ 1/2 + ¢ for some ¢ > 0 to be determined later
on, we see that

k
By <3 CE (my)~/p=1/Dp (g ) /p+1/24 0Py ) ==L /pH1/2+€)+1/2
1=1

< CP (my)P~1-PP- pep Z(m,)ep

SCf,p(mk)p 1(mk)(1 p)ep pp/zk(mk)‘PPIZ’_

Choose £ > 0 so that (1 — p)ep — pp/2 < 0. Then (m;)(1—#)P—#p/2 < 1 for
all k > 1. Next, choose N € N so that if k¥ > N then k(m;)~??/2 < 1. Let

C = CP?,(1+ max{k(my)~??/2: 1<k < N}).
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Then we have for all k£ > 1,
B; < C(mk)"l .
Finally, for B3 we have

(o o}
By < ) (my)~(/2=1/Drap| 6} p

I=k+1
<C Z (my)~A/P=12p( )22 < C z (m)P~! < C(my)P?,
I=k+1 I=k+1

because 0 < p < 1. Consequently,

Sl:p(mk)ll P U(03)V ik /p-1/229) < C

and Corollary OQ 1 implies that o, € M(HZ2), and we see that o0 € M(HZ)
for -1+ p/2 < @ < 0. This completes the proof of Theorem 2.
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