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1. Introduction. The purpose of this paper is to give a generalization
of the Andalafte and Blumenthal characterization of Banach spaces
among the class of complete, convex, externally convex, metric spaces
which have the two-triple property. This generalization answers a question
of Martin and Valentine [4] (P 962). We also provide a negative answer
to one of their questions (P 961). See [3] for definitions and a detailed
study of these concepts. A metric space satisfies the Youmg Postulate
provided, for each three of its points p, g, r, if ¢’ and r’ are the respective
midpoints of p and ¢ and p and r, then ¢'r’ = ¢r/2 (juxtaposition denotes
distance). Andalafte and Blumenthal [1] showed that a complete, convex,
externally convex, metric space which has the two-triple property is a real
Banach space if and only if it satisfies the Young Postulate. We will say
a metric space satisfies the Local Young Postulate provided, for each point
t of the space, there is a spherical neighborhood 8; with center ¢ such
that 8, satisfies the Young Postulate. The main result of this paper is
that a complete, convex, externally convex, metric space is a real, rotund
Banach space if and only if it satisfies the Local Young Postulate.

A local version of the following theorem, which is found in [1], p. 29,
is useful in the sequel.

THEOREM AB. Let Y denote a complete, convex, externally convez,
metric space which has the two-triple properly and satisfies the Young Postu-
late. If ¢’ and ' are points of the lines L(p, q) and L(p, r), respectively, with
pq = A-pq and pr' = A-pr (0<<A<1), then q'r' = A-qr.

The local version of Theorem AB simply requires that the points
P, q, r of the theorem lie in a sphere which satisfies the Young Postulate.

Throughout this paper, M will denote a complete, convex, externally
convex, metric space which satisfies the Local Young Postulate.
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2. Immediate consequences of the Local Young Postulate. Before
proceeding with the characterization of real, rotund Banach spaces, we
first show that each pair of distinet points lies on a unique metric line
and we prove that “small” spherical neighborhoods are convex.

THEOREM 2.1. Each two distinct points of M lie on a unique metric
line.

Proof. If the contrary is assumed, then distinct points p, g, r, ' and
segments S(q, r) and 8(g, r') can be found such that ¢ is a midpoint of
p and r, q is a midpoint of p and »’, and the segments S(q, ) and S(q, r’)
have only the point ¢ in common. By the Local Young Postulate, there
is a sphere S, with center ¢ and radius e, say, such that S, satisfies the
Young Postulate..Let ¢, ¢ and 8 be points on the segments S(g, r), S(q, ')
and a %egment S(p, q), respectively, such that ¢s = qt = qt' = ¢/2. Then
¢, 8, 1, t' are elements of S, q is a midpoint of s and ¢, and g is a midpoint
of s and ¢'. By the Young Postulate for S;, we have ¢qq = #'/2, contrary
to the fact that ¢t # t'.

THEOREM 2.2. If 8, , 18 a sphere which satisfies the Young Postulate
and if ® and y are distinot points in 8, ,, then 8,, contains the segment
joining x© amd y.

Proof. Let  and y be distinct points in §,, and let z be between
z and y. Without loss of generality assume 2z > yz. Let ' be the point
such that a#pz’ holds and xp [vx’ = wz[/vy = A < 1. Note that 1> 1/2 and
P2’ < px < e. Now

yo' <pr’'+py = [(1—-A)/Alpz+py < [(1—2)/A)e+e = (1/A)e.

Since 8§, , satisfies the Young Postulate and, consequently, the local
version of Theorem AB, we have

pz = A2’y <A(l/A)e = e.
Thus z lies in 8, and §,, contains the segment joining @ and y.

3. Parallelograms and trapezoids. It is now possible to define parallel-
ograms and trapezoids, at least locally, and to show that they have prop-
erties similar to those of parallelograms and trapezoids in the Euclidean
plane.

Definition 3.1. Points g, r, ¢’, »' will be called vertices of a trapezoid
provided there is some point p such that p is between g and ¢’, p is between
r and 7', and ¢p/qq’ = rp[rr’.

Definition 3.2. Points ¢, r, ¢’, »’ will called vertices of a parallelogram
provided there is some point p such that p is between ¢ and ¢’, p is between
r and 7', and ¢p/qq’ = rp/rr’ = 1/2.
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It should be noted that, according to our definitions, a parallelogram
is a special trapezoid. The following theorem lends some ¢redence to our
choice of terminology.

THEOREM 3.1. Let 8,, be a sphere which satisfies the Young Postulate.
If q, v, ¢, " lie in 8,5 and are vertices of a parallelogram and if p is the
midpoint of ¢ and ¢’ and of r and r’, then qr = q'r’, qr' = rq’, p 18 the midpoint
of the midpoint of ¢ and r and the midpoint of ¢’ and ', and p is the mid-
point of the midpoint of ¢ and r’' and the midpoint of r and ¢'.

Proof. Let s, ¢', t, ¢’ be the respective midpoints of ¢ and », ¢’ and 7/,
rand ¢, and ¢ and »’. The Young Postulate applied to the points g, r, ¢’
yields pt = ¢r/2. Similar consideration of r, ¢’, ' gives pt = ¢'r'/2 and,
consequently, gr = ¢'r’. In exactly the same manner we obtain r¢’ = ¢r'.
Now let t* be the point such that p is the midpoint of ¢ and t*. Since

at* < ap+pt* =ap+pt<ap+pa+tat<se,

r,t, 7', t* lie in 8,,, ,t,7’,t* are vertices of a parallelogram, and hence
rt = r't*. Moreover, t, ¢, t*, ¢ are vertices of a parallelogram and lie in
8,.. Thus ¢t* = ¢'t. Now

g+t = gt+tr =q'r = qr';

and since the segment joining ¢ and 7' is unique, by Theorem 2.1 we have
t* = t'. A similar argument shows p is the midpoint of s and s’, which
completes the proof.

THEOREM 3.2. Suppose 8, , satisfies the Young Postulate. Let x, y, z, w
be vertices of a trapezoid in 8, ,; and let r be the point between = and z and
y and w such that or(vz = yr/yw = A. Then wyjwz = A|(L—A). If p s
between x and w and if 1 i8 between y and 2 such that xp jaw = ytlyz = A,
then r i8 the midpoint of p and t. Moreover, if l and m are poinis on the segments
joining x and r and y and r, respectively, such that rljro = rm/ry, then m is
between 1 and the point n on the segment joining y and z for which 2l [zx = zn [2y.

Proof. Without loss of generality, assume A< 1/2. Let » and o
be points such that » is the midpoint of # and », and 7 is the midpoint of
y and %. By Theorem 2.2 (since 4 < 1/2), 4 and v liein §, ,5. Thus z, y, , v
are vertices of a parallelogram, and if ¢ and s are the respective midpoints
of # and « and y and v, then r is the midpoint of ¢ and 8, and ¢8 = a2y = .
We have ruf/rw = rofrz = A/(1—21). Let o be the point between y and z
such that yo/yz = yu/yw = 21; then by the local version of Theorem AB
in 8, ,; we have ou = 24-wz. Furthermore,

oy = uwv = [A/(1—2)]Jwz
and

0v = (1—2A) oy = (1—24)[A/(1 — A)]Jwe.
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Thus
uv+"oo = [A/(1—2)]wz+ (1 —24)[A/(1 — A)Jwz = 2A-wz
and v is between u and o. Since
yriyu = yslyv = yt/yo = 1/2,

r8 = w2, 8t = vo[2,rt = wo/2, and 8 is between r and {. We now infer
that ¢, r, 8, t are linear, and since lines are unique, 7 is between ¢ and ¢.
An argument gimilar to the above shows that p, ¢, 7, 8 are linear and r is
between p and 8. It is now easily seen that pr = 7t

Let I and m be points on the segments joining # and r and y and 7,
respectively, such that rl/re = rm/ry, and let n be the point on the segment
joining y and 2 such that.zl/zx = zn[2y. That m is between I and » follows
from applying the local version of Theorem AB to the triple of points
r,o,y and y,r,t and 2, @, y.

4. The characterization. We are now ready to show that M is a real,
rotund, Banach space. Since we have already shown M has a unique line
through each pair of its distinct points, we need only to show M is a Banach
space over the reals (see [2], Theorem 3.2, p. 369, for alternate criteria
that a Banach space be rotund). We accomplish this by showing M satisfies
the Young Postulate. The Andalafte and Blumenthal result [1] then
completes the proof.

THEOREM 4.1. If p, 2,y are points of M with ', y’ the midpoints of
p and x and p and vy, respectively, then 'y’ = xy (2.

Proof. Since M satisfies the Local Young Postulate, there is a sphere
S with center p which satisfies the Young Postulate. Let 8, { be points
in 8 and on the segments joining p and # and p and y, respectively, such
that ps/pr = pt/py. Let A be the set of all A > 0 such that, for each u,
0 < u < 4 whenever 8’ and ' are points on the lines joining » and & and
p and t, respectively, such that

(i) if ps'/ps = pt'[pt = u, then &'t [st = u;

(ii) for each point m between & and ¢ there is a point m’ between
&’ and ' such that p, m, m’ sadisfy the same betweenness relation as p, s, s’,
and pm'/pm = u and m’'s’/ms = pu.

If A4 is not bounded from above, then since pz/ps = py/pt = a
implies @y/st = a and pa'ps = (px/ps)/2 = (py/pt)/2 = py'[pt implies
o'y’ [st = a/2, we have 'y’ [vy = 1/2. By the way of contradiction suppose
4 is bounded from above. By Theorems 2.2, 3.1 and the local version of
Theorem AB, A # @. Thus sup A exists, say equals !. It follows from the
- continuity of the metric that ! is an element of A. Let # and v be points
on the rays of p and 8 and p and ¢, respectively, such that pu/ps = pv/pt
= [l. For each point w on the segment 8(u, v) joining % and v, there is
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a sphere 8§, , which satisfies the Young Postulate. Since S(w, v) is compact,
there exists a finite collection of spheres, say B 115)e 1 B, 1/)eg s « -
«+y By, 13, OF the set of spheres 8,,,; that covers S(u, v). Let 7 be the

besgue' number for the open cover {Swj,(,,g), i =12,...,m} Let
U = 8p,8;,84,...,8, =0 be points on 8(u, 'v; such that s,_,8;8,
(t=1,2,...,n—1) holds and s, ,8; = 838;,, = uv/n < v/2. Note that
8;_1, 8; 8;,, lie in a sphere which satisfies the Young Postulate. For each
tand j (0 <1< n,1<j<m)suchthats e Sw,,(ua)., choose 7, = (1/3)8;—
—w;8;. Then §, . is contained in 8y, a3, aDd if ? i8 chosen on the ray
from p to s such that s;#; = r = minr,, we conclude that ¢, € S,,I,(,,,),j.
No generality is lost if we assume pu > ps; (i = 1,2,...,n). Let &, 8’
be points such that ps,u and pus; hold and us;, us; <r. Let 0 = ps, /pu
and k = pu/ps, . It follows that us; = (1—o)pu and us; = [(1—k)/k]pu.
Let s; and s; be points such that ps;s;, and ps,s; hold, and we have
P8;/ps; = 0 and ps;lpsy =k (i =1,2,...,n). Then 8i_1y 8%y 8441y 811,
8y 8,198 1) 8,8, lie in a sphere 8wy aisey- Since psjpu = ptipv =1
and s, is between p and w and s/, is between p and v, we have ps/ps, = pt/ps,
= @, 8t = a-8,8, and, in fact, 8,8, = (I/a)uv. It is easily seen that

si_18 = (a)s,_,8, (i =1,2,...,m).
Since ps;[ps; = ¢ and ps,[ps; = k, we obtain
8;8;/s;8; = [k(1—0)]/[k(1—0)+1—K].
Since 8;_,, 8;, 8511y 81—1s 8 8415 8115 8 841 lie in a sphere B 1131y
where Swj,(,,,),j satisfies the Young Postulate and
8;8;/8:8;, = [k(1—0)]/[k(L—0)+1—k] (i=0,1,2,...,n),
it follows from Theorem 3.2 that
9:-184/32-13;;i = 8;118[8¢118_, = [k(1—e)]/[k(L—ec)+1—k];

that is, 8_,, 8,1, 81,1, 81 are vertices of a trapezoid and

sl 8' — [k(l_c)]/[k(1—0)+l_k] 8" 8"
S k(A —)]/[k(L—0) +1—Fk] 1
6=1,2,.. n—1).
Since 8, 8, ..., 8, are linear, we see that s;, s;, ..., 8, are linear and

8y 81 [st = (8] 8 juw) (uo/st) = Lk > 1.

By the construction above, (i) and ('ii) of the definition of 4 are seen
to be satisfied. Thus I/k is an element of A; that is, I # sup A. This contra-
diction proves the theorem. =~
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Applying the result of Andalafte and Blumenthal [1], we have

THEOREM 4.2. A complete, convew, éxternally convex, melric space is
a real, rotund, Banach space if and only if it satisfies the Local Young Pos-
tulate .

5. Wilson angles and their supplements. Wilson [5] defined angles
in arbitrary metric spaces as follows. If a, b, ¢ are points of a metric space,
then it follows from the triangle inequality that

—1 < (ab®+ ac® —be?) [2ab-be < 1.
Thus bac is called an angle with vertex a, and its value is given by
bac = arccos[(ab®+ ae® —be®) [2ab-ac].

Wilson defined the angle (o, o) of two metrie rays ¢ and o (congruent
images of half-lines) with common initial point a by (¢, ) = limbae
a8 b and ¢ tend to a on the rays ¢ and o, respectively, provided this limit
exists. Martin and Valentine [4] conjectured (P 961) that the following
properties imply that a complete, convex, externally convex, metric
space M is an inner-product space:

(i) each two intersecting rays determine an angle as defined above,

(ii) the space M also has supplementary angles.

This is false, for the hyperbolic plane is seen to have these properties
as the following argument shows.

Let p, q, 7, and 8 be points in the hyperbolic plane such that p is
between ¢ and s. By the hyperbolic law of cosines, |

‘co8 < gpr = (coshpwcoshpy — coshay) [sinh pzsinh py
for any points # and y on the rays R(p, q) and E(p, r), respectively. A similar
statement holds for < rps and
rps+ <rpq = =.
By considering the Taylor expansions of the respective hyperbolic
functions we have
cosh pz cosh py — cosh oy

sinh pzsinh py
To= [(1+ —1;—“;1 +% + ...)(1+ pzy; +%— + )—
S e 57 Yo 5]
= Jim 1’2‘”!2 + 1;‘? - ?,z) (pz-py)~",

which is Wilson’s definition of the angle between two rays.
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