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1. Introduction. At the symposium on Differential Geometry held
at Nara last September, R. Takagi told us the following question:

“Is there any complete flat surface (i.e., a complete surface whose
Gaussian curvature with respect to the induced Riemannian metric is
everywhere zero) in S* other than the Clifford tori?”

In this paper I shall give an answer to this problem. Main theorems
are Theorems 7 and 8. The geometric construction given in Theorem 8
and the remark after it may be seen to correspond to Theorem I in Mas-
sey [4] which characterizes complete flat surfaces in Euclidean space E°.

Let us consider the unit hypersphere §°

(1.1) Bttt =1

in Euclidean space E*. Then, by identifying diametral points of §* with
the induced Riemannian metric, we get an elliptic (non-Euclidean) space &*.
In this &% a Clifford surface @ is given in the standard form by

(1.2) sinz—g(av"’—{—avz)—cos2 P—(xz—i—mz) =0
. 2 1 2 2 3 4/ — .

It has two families of generators such that any two lines of a family
are left parallel and any two lines of another family are right parallel
and lines from different families intersect at the constant angle 6. It is
homeomorphic with a torus and is flat, i.e. its Gaussian curvature is
everywhere zero.

The Clifford surface was first found by W. K. Clifford in 1873 and
was the source of the problem of Clifford-Klein space forms (cf. Klein [3]).

We denote the natural projection of S° onto &° by ¢. Then, the
covering surface ¢~ '(Q) of @ in §* is givén by equations

0 0
(1.3) 22+ 22 = cos? 5 ry+ak = sin25.
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We call this surface as Clifford torus in 8%, since it is flat and is ho-
meomorphic with a torus. On the Clifford torus there are two families
of great circles. Any two great circles in a same family do not intersect
each other, but any two great circles in different families intersect at
two points. For any small quadrilateral, which is made of these great
circles, opposite sides have equal lengths and adjacent sides intersect
at the constant angle 6. Clifford torus with 6 = =/2 is a minimal surface
in 8* (ef. Chern [2]).

2. Reduction of the fundamental forms. Let f: M* — 8* be an iso-
metric immersion of a 2-dimensional flat Riemannian manifold M?* = M
into S%. We take a coordinate neighborhood % of M with local coordi-
nates (u!, %) and denote the natural frame (0/0u!, @/0u?) by (e,, e5).
We put X, = f(e,) and denote the canonical Riemannian metric of S°
by G; then
= 0 4 G(X,, X
(2.1) Jab =9(W’ W) = G(X,, Xp)

are components in % of the induced Riemannian metric ¢ of M in §°
We denote the unit normal vector field over f(#) by N; then the Gauss
and Weingarten derived equations are given by

(2.2) Dy X, = {3} Xo+hp N
and
(2.3) Dy, N = —hX,,

respectively, where Dy means the covariant derivative with respect to
the Riemannian metric G in the direction of X,, and h,, are components
in  of the second fundamental tensor of M.

The integrability condition of (2.2) is easily seen to be

R(X,, Xd)Xb—‘f(K(eca 6d)eb) = (hpe,a —Moa,e) N + (—hpchg+ hygh3) X4,

where R and K mean the curvature tensors of S* and M, respectively.
As 8 is of constant sectional curvature 1, we have

(2.4) R(X., X3) Xy = G(X,, X)) X3—G(X,, X;5) X,.

So, by virtue of the assumption that M is flat, we can easily see
that the equation reduces to

—haahoc+ Rachoa = Gaa9ve— JacOvas  Poc,a = Rod,c-

Since dim M = 2, these reduce to
(2.5) hyskyy — B3y = — (911922 — 932)
and
(2.6) hu,z = h12,17 hzz,l = h21,2‘
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The integrability condition of (2.3) reduces to (2.6). Equations (2.5)
and (2.6) are Gauss and Codazzi integrability conditions, respectively.

A8 hy by —h3, < 0 by (2.5), we see that through each point of #
there pass two mutually distinet asymptotic curves. So, we may take
a cubic local coordinate neighborhood #, around any fixed point in %
so that coordinate curves are asymptotic. Then, we see that

(2.7) hy = hyy =0, his #0
hold good in #,. We may, moreover, take local coordinates so that
(2.8) hys,>0 in %,.

Now, the equations of (2.6) reduce in this case to

dlogh,, 2 1
ou? "'{12}_ 11} =0
and an equations which is obtained by interchanging the indices 1 and 2.
However, as

(2.9) by =W (>0), W =g,0,,—¢%
by (2.5), (2.7), (2.8) and by

2
dologW a
oub 2_; {ab}

holds good, (2.6) reduces to

liof =0t =

These equations are equivalent to

[12, 2] =0, [21,1] =0,
whence we see that
g1 does not depend upon u? and g,, does mot depend upon ul.

Hence, if we perform local coordinate transformation in %, defined by
1

u u?
ul = f l/gu(ul)d’ul, u? =f Vgoo(u?)du?,

then we see that components of the metric tensor in new local coordinate
system satisfy the relation g,, = ¢,, = 1. As this transformation preserves
properties (2.7) and (2.8), we see that we can take local coordinate system
in %, of M so that

gu =9 =1, 1—g},>0,

(2.10)
ki = hyy =0, hyz >0
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hold good. In such coordinate system, u! is the arc length for each asymp-
totic curve u? = const and 2 is the arc length for each asymptotic curve
u! = const. The two families of asymptotic curves constitute a Tscheby-
scheff- net, i.e., opposite sides of each small quadrilateral, whose sides
are asymptotic curves, have equal lengths (cf. Blaschke [1]). So, we
call such a system a T'schebyscheff local coordinate system for brevity.

Now, the Gaussian curvature of M is everywhere zero, by assumption,
80 we see by the first equation of (2.10) that

1 0 (0g,, 0912
(2.11) —W{auz(agul /W) oul (aiz W)} =90.
If we put
(2.12) g12 = COS w,
then (2.11) reduces to
02w
outdut

(cf. also Takagi [6]). Hence, w is a function of the form
(2.13) o = a(u)+b(u?
whose value lies in an open interval (0, =).

3. Complete flat surfaces. In this and the next section, we assume
that the flat surface M in S* in consideration is complete with respect
to the induced Riemannian metric.

THEOREM 1. Every asymplotic curve of a complete flat surface M in
8% can be extended indefinitely. '

Proof. As the universal covering surface M of a 2-dimensional
complete flat Riemannian manifold is the Euclidean plane E*, M can be
regarded as the image of an isometric immersion f of E* in 8% So, M
has neither boundary points nor singularities, and hence every asymptotic
curve can be extended indefinitely, q.e.d.

Now, a local coordinate system (#, ¢, D), where D and % are open
sets in the (u!, u2?)-plane and M, respectively, and ¢: D — % is a diffeo-
morphism, is said to be cubic if D is an open cube of the form

= < ¢, -] <

Let us consider two cubic Tschebyscheff local coordinate systems
(#,9,D) and (%',¢', D’) with local coordinates (u!,u2) and (‘u!, u?),
respectively, such that # N#' is not empty. Then, we can easily see
that there are relations of the form 'u! = 4wu'+tal, 'u® = +u24a? in
%N, where a' and a? are constants. We can easily modify Tscheby-
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scheff local coordinates in the second coordinate neighborhood so that
‘w! = ul, ‘u? =wu?in N%'.Then, in Z N%' components of the first
and second fundamental tensors in  and %' coincide. So, we get
a Tschebyscheff local coordinate system extended over # L #'.

Next, let us fix a point p, on the surface M and let us take
a cubic Tschebyscheff local coordinate system # around p, so that p,
has the coordinates (0,0). We consider the asymptotic curve u? = 0
through p, in  and extend it indefinitely in both directions. Then, the
cubic Tschebyscheff local coordinate system % can be extended inde-
finitely preserving the Tschebyscheff property along the extended asymp-
totic curve I',. On I'; there is a point p, with local coordinates (ug, 0)
for arbitrary fixed number u,. Through p, there passes another asymptotic
curve which can be also extended indefinitely. We denote the curve
by I',. We pick up the part of cubic Tschebyscheff local coordinate system
around p, and extend it along I',. Then on I', there is a point p, whose
local coordinates are (uy, uZ) for arbitrary fixed value uZ. Thus, we have
a differentiable mapping of the (u!, u?)-plane on M2 It is an isometrie
immersion of the (u!, u2)-plane regarded as a flat Riemannian manifold
with the metric |

(3.1) g1 =922 =1, g1 = cos(a(u?)+b(u?).

4. The curvature and torsion of asymptotic curves. Let us. calculate
the geodesic curvature of asymptotic curves. First, for a curve C on M
in S§* the geodesic curvature x is given by »n = V,t, where ¢ means the
unit tangent vector of C, V, means the covariant derivative along the
curve with respect to the induced metric g and {f, n} is an orthonormal
frame.

To calculate the geodesic curvature », of the asymptotic curve u?
= const, we note

a
(4.1) t=(1,0), xn= {11}.
Then, as
(4.2) 1] Y 0912 2] 1 0gr
- 11— wez oauwrt’ 11 W2 our’

by the first equation of (2.10), we see that

- a b_1ag122_aw2_ da \?
= e a1 AW our) T \Vowr] T \awr)”
We define the sign of », so that (f, n) give the same orientation of
the (u', u?)-plane as the natural frame. This is equivalent to take

[ ge 1
(4.3) n —(— W W)
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and

(4.4) _ Jw _ da
) P e

In the same way, the geodesic curvature x, of the asymptotic curve
u! = const is given by

(4.5) t=(0,1), xm = {2“2}

We take the sign of », by the same convention as above. This amounts
to take

1 gy
(4.6) n = (— W W)
and
L7 Jw ab
(4.7) T 0w T dur

Thus, we get the following

THEOREM 2. On a complete flat surface M in S° each asymplotic
curve in the same family has the same geodesic curvature.

By (4.4) and (4.7) we get also the following

THEOREM 3. On a complete flat surface M in S° each curve of a family
of asymplotic curves u* = const (respectively, u' = const) is a geodesic if
and only if a(u') (respectively, b(u?)) is a constant function.

In the next place, we calculate the curvature and torsion of
each asymptotic curve of M? as a curve in 8% First, for any curve C on
M? we put T = f(t). Then, we have

(4.8) DypT = f(Vit)+h(t,t)N.
So, if the curve in consideration is asymptotic, we get
(4.9) DpT = xf(n).

Thus, H = f(n) and » can be regarded as the principal normal vector
and curvature, respectively. (The convention for the direction of H and
the sign of curvature are a little different from the usual one.)

For the asymptotic curve u? = const, we see that the curvature
is equal to the geodesic curvature x», given by (4.4). To get the torsion
of the curve, we utilize the Frénet frame (7', H, B) with

(4.10) B=N
and the Frénet formula

DT =xH, DyH = —xT+*N, DyN = —zH.
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By virtue of (2.3), we see that
DN = —h{X, = —W(¢g”X,) = —H.

This shows that the torsion z, of the asymptotic curve in considera-
tion is equal to 1 everywhere.

In the same way, the curvature and the torsion of the asymptotic
curve u! = const are given by x, in (4.7) and t, = —1. Thus, we get
the following

THEOREM 4. On a complete flat surface M in S°, the curvature of
each curve of a family of asymplotic curves is equal to its geodesic curvature
and the torsion is equal to a constant 1 or —1.

.As the corollary of Theorems 2 and 4, we get the following

THEOREM 5. On a complete flat surface M in S°, all curves in a family
of asymptlotic curves are congruent with each other.

By (4.9) we see that an asymptotic curve on M, which is also a geodesic
of M, is also a geodesic of S°. So, by virtue of Theorem 3, we get

THEOREM 6. On a complete flat surface M in S°, each curve of a family
of asymptotic curves u®* = const (respectively, u' = const) is a great circle
of 8 if and only if a(u') (respectively, b(u?)) is a constant function.

As a corollary, we get the following

THEOREM 7. Any complete flat minimal surface in S* is a Clifford
torus with 6 = w/2.

Proof. Since the condition for a surface to be minimal is H = }¢®h,,
= 0, we see that g,, = cos(a+b) = 0 holds identically for a surface in
consideration. So, a(u!') and b(u2?) are both constant and the surface
is a Clifford torus with 6 = =/2.

5. Geometric construction of complete flat surfaces. The arguments
in the preceeding sections suggest us a method how to construct candidates
of complete flat surfaces in 8°. To explain it, we first define two func-
tions a(u!) and b(u2) both defined on a whole real line R to be an admis-
sible pair if

0 < a(u')+b(u?) <,
where u! and #? vary independently.

THEOREM 8. Let a(u') and b(u®) be an admissible pair of functions.
We first draw a curve I'y with curvature x, = —da/du' and torsion v, = 1.
Using the moving Frénet frame (T, H, B) of I';, we define a moving frame
(X1, Xyy N) on I’y by

X, (ut, 0) = T(u?),
(5.1) Xy(uty 0) = gyo(ut, 0)T'(u') + W (ut, 0) H (u'),

N(ul, 0) = B(ul),
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where we have put
(5.2) g12 = COS (a(u1)+b(u2)), W = sin(a(ul)—l—b(u2)).
Then, taking

T (uty 0) = X,(u', 0),

1 g12(u', 0)
— T X (u,0)L 22T x
W (ul, 0) (w5 0) W (4, 0) (4 0),

B(u', 0) = N (u', 0),

(5.3) H(u, 0) =

as the initial Frénet frame for each fixed value u', we draw a curve I'y(ul)
with curvature x, = db/du?® and torsion v, = —1. Then, the locus of all
I'y(u') (u'eR) is a flat surface in S°.

Proof. We put

g =9z =1, g5 = COS (a(ul)‘*‘b(uz))’

(5.4) .
hyy = hgy = 0,  hy, = sin(a(u?)+b(u?)).

Then, we may easily see that these sets of functions defined over
R? = Rx R satisfy the Gauss and Codazzi equations (2.5) and (2.6), re-
spectively. So, by the fundamental theorem of surfaces which also holds
for surfaces in §* (cf. Sasaki [5]), we see that there exist surfaces in §*
whose first and second fundamental tensors coincide with the tensors
given in the first and second equations of (5.4) and any two of them are
congruent under a motion of §°

We take any one of these surfaces and denote it by M which can
be regarded as an isometric immersion f of R? with the Riemannian metric
given by the first equation of (5.4) in 8. At each point f(u?, u2) of M,
we have the Gaussian frame (X,, X,, N). We define an orthonormal
frame (7', H, B) by

T (u'y w?) = X,(u', w?),

G12(ut, u?) 1
— W X, (u?y u?)+ W)‘ Xo(ut, u?),

B(ul, u?) = N (u?, u?).

(5.5) H(ulb, u2) =

We fix the value u2 and consider (T, H, B) as a moving orthonormal
frame along the u!'-curve (asymptotic curve). Then, by Gauss and Wein-
garten derived equations, we can show that

(5.6) ‘DX]_T = xIH, 'DXIH = —%1T+B, 'DX B = —H,

1

where »;, = %,(u) = da/dul.
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As an example, we prove only the first one:

1
(1) D5 = {1 X = 5 T (g X, + X,

However, as 0g,,/0u! = Wx,, we get the first equation of (5.6).
Equations (5.6) show that (T', H, B) for each fixed value »? is the moving
Frénet frame along the asymptotic u!-curve. Especially, for the asymp-
totic curve w? = 0, the moving Frénet frame (T (u!), H (u'), B(u')) relates
to the Gauss frame of M on the curve #2 = 0 by (5.1).

In the same way we can show that

T(uly u?) = X,(ut, u?),

7 1 g12(uly u?)
Hlul. u?) = ———— X (ul. u2 Ji\"H» )
(5-8) { H{w,u) Wi, wg) 0 )

B(ut, u?) = N (!, u?)

Xy (uy u?),

satisfy the differential equations

(5.9) .szT = xz.ﬁ’ .szﬁ - —sz—B’ .DxB - E,

2
where x, = x,(u?) = db/du?.

Thus (T, H, B) for each fixed u! is the moving Frénet frame of the
asymptotic u2-curves. For u? = 0, it reduces to the orthonormal frame
defined in (5.3). These facts show that the assertion of the theorem is
true, q.e.d.

The surface M is a candidate for a complete flat surface. It is
complete if and only if R? with the Riemannian metric

(5.10) gu =92 =1, g =cos(a(u)+b(u?) .

is complete. Recently, Prof. K. Nomizu kindly wrote me that Cecil
remarked the following fact: The Riemannian metric (5.10) is complete
if there exist constants a, 8, A and B such that

O<a<a@)+b(u2)<p<m,

db
4,
du?

da
dul

(5.11)

<B (4,B>0).

We can prove it easily by showing the following facts under con-
ditions (5.11):

(i) Let C be a smooth curve in R? and denote its Euclidean length
by Jz(C) and the Riemannian length corresponding to the metric (5.10)
by Jx(C). Then, we have

V2kd 5 (0) < J(C) < V2J5(C),
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where

: B . a
k= — —r.
mm{cos g2 Si o
(ii) If C is a geodesic for the Riemannian metric (5.10), then the
curvature of C is bounded.
From this consideration, we see that there are many complete flat
surfaces immersed in $* which are not Clifford torus.
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