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ON THE SPECTRAL RADIUS IN L,(&)

BY

E. PORADA (WROCLAW)

The aim of this note is to present some properties of the spectral
radius of the elements in the Il,-group algebra of an infinite non-abelian
discrete group. After introducing some preliminary notions we formulate
a list of properties of the group algebra of an abelian group, which later
will be discused in the case of non-abelian groups. Most of them are devo-
ted to spectral radius and the regular norm of hermitian elements of the
group algebra and the behavior of these while passing from the group
to separating family of homomorphic images of it.

1. Let G be a locally compact group with the unit 1. Let |z||, v(x),
A(x) denote the norm in the algebra L,(G), the spectral radius, and the
regular norm of z, respectively, i.e.

lel = [|2(9)| n(dg),
G

where y is the left invariant Haar measure in G,

v(@) = lim Vi, A(z) = |,

n—o00

where 2" is the n-fold convolution and 7 the regular representation of
L,(@) in the algebra of the linear operators in the space L,(@). For her-
mitian elements # in L,(G@) we clearly have
A(@) < »(2) < Jall,
since
TP = 1T = 1T aall < ll™l] < llol*™

It is known that if G is a finite group, then » and 4 are norms in the
finite-dimensional algebra of hermitian elements in I, (@). Consequently,
for certain constants ¢,, c,,

e Ax) <v(x) < c,A(x) for x = z*, xel, (@),



280 E. PORADA

and, in particular,
Al@®) <c @) <v(z") =v(2)" < cd(z)" form=1,2,...,

whence v(z) = A(z) for x = z*, zel,(GF).

For a normal and closed subgroup H < @G let my and mg; be the
left invariant Haar measure in the group H and G/H, respectively, such
that for ¢ C, (@), i.e. for any continuous function x on the group @ vanishing
outside a compact set, there is

[agyu(dg) = [ ( [z(ghymy(dh)) mgy (),
G

G/H H

where § denotes the element gH of G/H. The map

T —> @ ({D),
where ¢y () eCo(G/H) and

r (@) (7 f @ (gh)my (dh),

is the natural homomorphism of C,(G) onto Cy(G/H). In the case where
G is discrete, gy is the linear extension of the natural homomorphism

Cy(G) > G—->G|H = Cy(G/H).

The continuous extension of ¢ to L,(G) we denote still by ¢ . It is
clear that |lpg (#)] < [lo]l.

1.1. LEMMA. Let G be a locally compact group and # a centered (i.e.
closed under finite intersection) family of mormal subgroups such that
( H = {1}. Then, for each xe L,(G),

He

im [lpg (@)ll, = (|2l
H-{1}

Proof. It is sufficient to prove that for the f’s from a dense (in the
L, -norm) subset of L,(G) we have

(*) [| [#ighyme(@m) P mg(dg)= [ 15(9)” u(dg)
G/H H é
for some H e#. Let f be a simple funection, i.e. such that supp(f) is a finite
union K, v ... U K, of disjoint compact sets and f is constant on each
K;,,i=1,...,8 (The set of simple functions is dense in L,(G),0 <p
< o0.) Of course, K;K;' is compact for ¢,j =1,...,8 and 1¢K;K;'
if ¢ # j. By assumption there exists an He.# such that H n K;K;' =0
whenever ¢ #3j, ¢,j =1,...,8, whence, for a g in G, gH N K; + @ for
at most one ¢. Consequently,

f |f(gh)[Pmgy () = f (£ (gh))"| mg (dh) = f F(gh)myg (ah){"

and (*) follows.
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1.2. LEMMA. If ¢: B; — B, 8 a continuous homomorphism of & Banach
algebra B, into a Banach algebra B,, then
v(tp(w)) <v(x).
Proof. By assumption there exist a constant ¢ such that

lp (@)l 5, < ellzl s,
for x<B,. Hence

n___ n__ n
v (¢ (@) = lim V] (@)"|5, < lim Ve lim V]a"|p, = »().
n—oo n—00 n—00

Consequently, if H is a normal subgroup of @, then for z¢L,(G)

V(‘Pﬂ(m)) < v(2).

2. In this section G will denote an abelian locally compact group.

2.1. THEOREM. The algebra L,(G) is commutative and the spectral
radius v satisfies following conditions characterisiic for a morm:

(A) v(@+y) <v(2)+v(@) for #,yeL,(G),

(B) »(®) =0 if and only if x =0,

(C) spectral radius (now spectral norm) i8 continuous with respect to
the usual norm in L,(G),

(D) if A is a centered family of mormal subglroups of G such that
() H= {1}, then

He M

v(z) = lim v(q)H(w))
H-{1}
and

(D’) A=) = lim A{py(2)).

H—{1}

Properties (A) and (B) follow from the following fact (cf., e.g., [6],

p. 264): if xeL,(G) for a locally compact abelian group G, then
»(@) = llall, = max {|z(y)|: &},
where z(y) = [#(g)x(g)u(dg). Properties (A), (B), and the inequality
G

v(#) < |l#| for weL,(G) imply immediately (C). Properties (D) and (D’)
are obtained via the following lemma:

2.2. LEMMA. If # is a centered family of subgruops of G such that
(N H = {1}, then I = (J H*, where H* (the annihilator of H)is the group

Hed Hef

of all characters of G which map H onto 1, is8 a dense subgroup of G.
Proof. Since .# is centered, I" is a subgroup. By Pontrjagin’s duality

theorem, if I" +# é, then there exists a non-trivial character ue(é)“ =@

such that w(I') = {1}. So u(H') = {1} for He #, whence ue () (H*)*
= () H = {1}, which is a contradiction. Hed
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Because of (G/H)‘ = H' (cf. [6], .35) for a y in (G/H)" we write

(pa@) (1) = [( [ =(gh) 2(§) my(@h)) g (d5)
G/H H
= [ f @ (gh) z(9) My (dR)) M (dF)
G/H H
f 2(9) 2(9) u(dg) = &(x).
Hence
m »(pg(z)) = lim max |(pg(®)” (z)
H—{1} H—>(1} xe(G/H)*
= lim max [Z(y)|
H—{1} zeHJ-

= max{jé(x)]: xe U H*}

= max {|Z(y)|: xeG} = v(x)

which completes the proof of (D). By Plancherel’s theorem 4 = » and
we obtain (D').

3. Now we turn to non-abelian groups. We are going to show that

(A), (B), (D) and (D’) are in general not satisfied for a non-abelian
discrete group.

First we prove the following proposition.

3.1. PROPOSITION. Let F be a free group freely generated by two gene-
rators a and b. Let A and B denote the cyclic subgroups generated by a and b,
respectively. If @,y e 1,(F) and supp(z) = 4, supp(y) < B, then

v(@+y) > Viall Tyl
The proof of 3.1 is a simplification of the proof of a theorem of [2],
where a more refined result is proved for a soluble group.
Proof. Let us note first that if

ky K Bl
a“1bl...anbr = uw,... u,w,,

where k;, 1, are non-zero integers and u,, w,e A U B, then

ai =u, bi=w, @G=1,...,n).

Hence (the summation is all over the set of sequences {k;, .} = {k,, I,
By bidy {ki} = {k1y .oy Ko}y {} = {l, ..., L}, where k;,1; are non-
-zero integers),
l@+y)™ = D @+ y)™ (w)
weF

> D |(@+y)m (a1 ... aFabh)|
Vel
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SN > (@+9) () (@+Y) (1) -.. (@+) (10,)

(k13 ok bl1...a%n bln=u1w1...unwn

= Y |a(@)y(dY) ... z(a*)y (b7
{ki}s {13}

= D' |a(@h)] ... [z(d)| |y ()] ... ly (b'n)]

ki {13}

= (3 1o (@) ... le(@n)) (X ly @) ... ly (b))
{k;} {13}

= N jo(a (D ly@hI) = ll i

k=—o00 l=—00

Thus

2n 2n
lim Vl(2 +y)*"[| > lim Via|*lyI* = Vil lly|

n—00 n—oo

and the proof is complete.
For ¢ > 0 there exists a trigonometrical polynomial

M
_ int
= Edne
-M

such that

max | ()| <— Zld,.l

te[0,27)

(For existence see [7], p. 388.) Let
g(t) = f(t)exp(i(2M +1)1)

and
2M+1
{ ind
T(t) =g()+9(t) = D dppy_r6™+dy_p_e”"
n=1
N
_ t —int
— cne‘tn _|_c e n’
n=1

where ¢, =d,_5_,,m =1,...,N, N =2M+1. Let us define x, yel,(F)
by setting

¢, if w=a",b"
z(w),y(w) ={¢c, if w=a"0" n=1,...,N,

0 elsewhere.
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Then, since supp(x) = A4, supp(y) = B, and 4, B are abelian groups,
N
»(@) = v(y) = maxlg()+ (0 <o Xleal = 51l = 5 Iyl

3.2. COLLORARY. For every & > 0 there exist hermitian elements x,y
el, (F) such that

ev(w+y)=v(@)+v(y).

Proof. Let =,y be as above. Then » = z*, y = y*, of course, and,
by 3.1, L
ev(@+y) > eV |all Jyll = zllall > »(@) +v ().

We have proved that (A) does not hold in 7, (F).
We do not know whether the algebra I, () satisfies the condition (B)
(P 743) but we can show that this condition does not hold in the algebra
1,(@ @ H), where @ is any finite non-abelian group and H is any discrete
group. This follows from a well known fact (cf., e.g., [1]) that if @ is a finite
non-abelian group, then

L(G) = L(V,) @... ©@L(Vy),

where L(V,;) is the algebra of linear operators in a finite-dimensional
linear space V; and dim(V,;) > 1 for some 7. If dim(V) > 1, then there
exists an operator 7' in L(R) such that T" = 0. Thus there exist non-trivial
nilpotent elements in 1,(G). If xel,(G), 22 = 0 and yel,(H), then the
function  ® y defined by the formula

2Qy(g ®Dh) =z(9)y(h), geG,heH,

is an element of 1,(G @ H) and (x ® y)2 = 0.
We prove now that !,(F) does not have property (D).
The family .# of all normal subgroups H of the group F such that

|F/H| < oo i8 a centered family and () H = {1} ([4], p. 232). Let us
HeH

remark that if z,yel,(¥F) are hermitian elements such that »(x+ y)
>v(x)+v(y) and if He .#, then

”(‘PH (+y) = (pg(®)+ @l ?/)) v (pr “’))‘*‘”(‘PH(?/)
Thus we have
vpa(@+y) <v(@)+r(y) <v(@+y)

for any H e .#, whence we infer that »(py(#+y)) does not tend to »(x +y),
which shows that (D) does not hold.
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It is proved in a paper of H. Kesten ([3], Theorem 3) that if F is
a free group with n generators, then there exists an hermitian zel,(F)
such that

(i) z(w) >0 for welF,
(i) Jofl = 1, )
(iii) A(z) = V(2n—1)/n2.
Let us fix n > 2 and x¢l, (F') satisfying (i), (ii) and (iii). Let .# denote

the family of all subgroups H c F such that F/H is a finite group. If
He #, then A(py(w) = v(py(2)). Thus

on—1
z(¢H(m))=1>]/" — ()

/n2

and we infer that 1,(F) does not satisfy (D).
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