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1. Introduction. In this paper we study universal algebras (A; U,),
where U, is the set of all finitary operations f such that f depends on at
most one variable or the range of f has cardinality at most k (k cardinal
< |A]). Finite algebras of this type were studied in [4]. Let I 0 be
a set. Any subset o of A7 is called an I-relation on A and A, is the set
of all finitary operations f with fg,... g, ¢ o whenever all g,e p. A relation
o is stable relative (A; F) if F < A,. First all I-relations stable relative
(4; U,> are determined in terms of the lattice of all equivalence relations
on I. Further all relations ¢ such that A, = U, are characterized for
all finite k < |A] and for k¥ = |A|. Here the least cardinality of I with
an I-relation o satisfying A, = U, is k+1 for 1 <k < min(|4], Ry).

In the last section the equational class K generated by <{4; F') such
that U, is the set of all polynomials over (A4 ; F') is determined. This result
extends Weglorz’s representation theorem for Post-like algebras [26],
which in its turn generalizes Foster’s representation theorem for primal
algebras [8].

I would like to thank Dr. R. Quackenbush (University of Manitoba)
who corrected an error in an earlier draft of this paper.

2. Preliminaries. To make this paper self-contained we will first
briefly introduce the terminology and notation.

Let A be a set with a = |A| > 1. Let O™ be the set of all n-ary opera-
tionson A (n =1,2,...) and let

0= o™,
n=1

The coordinates (or components) of ae A™ will be throughout denoted
by (a, ..., a,). The image of a in the mapping f will be designated by fa
or fa, ... a, and the imageof B = B, x ... xB, < A" by fBor fB, ... B,.
The operations e} e O™ (1 < i < n), defined by e'a = a, for every ae A",
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are called projections [9] (others names: trivial, identity, or selective
operations). The set of all projections will be denoted by J.

A universal algebra is a pair (A; F) where F < 0. The set FnO™
will be denoted by F™.

We can construct the set [F'] of all compositions (or superpositions
or compound operations) over F as follows. Let ¥, = F. Suppose F; has
already been constructed. Let F; , be the set of all operations obtained

(i) by replacing a variable in an operation from F; by an operation
from F,,

(ii) by identifying some variables in operations from F;, and

(iii) by permuting variables in operations from F;.

Finally let

[F] = QF,-.

The sets C = O satisfying [C] = C are called closed classes. Because
[FuJ] is the set of all polynomials ([9], § 12) (or algebraic operations)
over (A; F>, we will call any closed class C containing J a polynomial
class (preferring it to the name clone used in [6]). The closed classes can
be described as subalgebras of a certain algebra on O [14] and, therefore,
form an algebraic lattice with respect to inclusion. .

Note that this lattice is countable if a = 2 (see [16]), has 2 ° elements
if 2 <a< R (see[12]and [5]), and 2¢") elements if a > No.

For simplicity we have excluded zero operations. If these are needed,
we can to each closed class C < O assigntheset C* = Cu{ac A |a, e C},
where a, denotes the mapping A — {a}. For this the Mal’cev [14] preiter-
ative algebra <0; ¢, 7, 4, *) can be extended to OUA so that (OUA; *)
is still a monoid and the subalgebras are the closed classes, the sets C*,
and the sets of zero operations. Most of our results can be modified to
include closed classes of the type C*.

Polynomial classes can be described using relations on A. Let I be
a non-empty set. An I-relation or |I|-ary relation o on A is a subset of the
set A7 of all mappings I — A. If |I| = k < R,, we will identify A’ and
A* and the I-relations are simply the k-ary relations. Throughout ¢ denotes
an I-relation on A. We say [18] that fe O™ (weakly) preserves o if
fg, ... g, ¢ 0 whenever all g;c o. Here and in the sequel » = fg, ... g, is the
mapping I — A defined by hi = f(g,%)...(¢,7) for every ie I. Let A, be
the set of all r< O preserving . It is easy to see that A4, is a polynomial
class [19]. The converse is also true; namely [17], given any polynomial
class P, there is a o such that |I|< a+R, and P = 4,. The relational
degree of P is the least cardinality of I for which there is a ¢ with 4, = P.

The set A4, can also be described as the set of all homomorphisms
(or compatible mappings) of the I-relations p" into o (n = 1,2, ...).
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We say that g is stable relative (A; F) or [F]if < A, ([T]if |I]| < Ro;
in [27] a binary stable relation is called an invariant relation). It is easy
to see that for o # O the following conditions are equivalent:

(i) o stable relative F,

(ii) o subalgebra of (A’; F), and

(iii) (o; F)eSP(4) [9].

In this sense, for o # @, A, is the largest set ¢ = O such that gis a
subalgebra of (A%; Q).

Let fe O™. We say that f depends on its i-th variable if there are
ae A" and be A such that

fa # fa,...a;_\ba;,,...a,.

We say that (b, by, by)e A* is an essential triple for fif by, b,, and b,
are distinct and there are a’e A" (j = 0,1,2) and 1<i<n such that
b, =fa’ya} =a; #aj,and a) =a; #aj forl =1,...,n;1 %1 [15]. We
will need the following result due to Iablonskii ([10], Basic Lemma) and
Salomaa [24] (see also [15]).

LEMMA 1. Let fe O depend on at least two variables and let 2 < k < .
If |fA™| > k, then there exist a’c A™ (j = 0,..., k—1) such that all fa’ are
pairwise distinct and (fa®, fa', fa?) is an essential triple for f.

3. Stable relations relative U,. Let U, be the set of all operations
depending on at most one variable. Let 0 < k < a be a cardinal and let
U, =U,0{fe O™| [fA"| <k, n=1,2,...}. It is easy to see that each
U, is a polynomial class and that U,= O. Let U consist of U, and all
fe O™ (n = 2,3,...) defined for every ae A" by

fa = Ap10;,D ... Dpray,),

where 1:{0,1} > A4, ¢;: A > {0,1},1 <, <... <4 <n, and @ is the
sum mod 2 on the set {0,1}. Burle [4] has shown that for « < 8, the
classes U,, L, U,, ..., U, form a unique maximal chain from U, to U,
in the lattice of closed classes (maximal in the sense that it cannot be
properly extended to a chain from U, to U,). For a > 8, the situation
seems to be more complicated. Using the ideas from [15], § 3, and
Lemma 1 it is easy to obtain

LeMMA 2. The classes U,, U,, ..., U, form a unique maximal chain
from U, to U, for every 2 < k < min(a, R,).

It is easy to characterize relations stable relative U,. For this we will
denote the set of all (binary) equivalence relations on I by C,. It is well-
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-known (e.g. [6] and [9]) that C; ordered by inclusion is a complete
lattice.

A set V = O is an upper order ideal if ze V implies ye V for every
xe U7,y 2 . The least upper order ideal containing W < (; will be
denoted by (W). A filter (dual ideal) is an upper order ideal that is a sub-
lattice of C;. The least filter containing W will be denoted by [W).

For any 0 < k < a we set W* = {ye¢ W | y has at most k equivalence
classes} and {W}* = [W)*\W¥,

For any f: M — N we designate by x; the Lernel of f, i. e. the element
of C,;, defined by (w, Y)e %, < fr = fy. Finally, for ye C; we set 4,

= {fedl | @ =y(»)= fr = fy}.

Note that A,, is an I-relation on A and that y' < 9" = 4,2 4,..
The relation | 4, with @ = C; will be denoted by 4G.

ye@

Now we can easily characterize relations stable relative U, and U,.

PROPOSITION 1. The relation o is stable relative U, if and only if o = AG
with G < (.

Proof. The sufficiency is immediate in view of fge A, for any fe 0%,
yeG and ge 4,.

For the necessity it suffices to prove re ¢ = 4, < o because we can
take G = {x,|re o}. Let re o and let pe 4,

We define fe OV as follows: 1. for ie rI we choose any j,er '¢ and
set fi = pj; and 2. for all ¢ AN\7I let fi be any element of 4.

The operation thus defined satisfies p = fr. Indeed, for any yel
we have (y, j,,) e %, and in view of pe 4, we get py = pi,, = fry. Finally
feU,c A, and re g give the required p = fre p.

THEOREM 1. The relation o is stable relative U, if and only if o = AG,
where G < C; satisfies {G}* =

Proof. Necessity. If ¢ is stable relative U,, it is stable relative
U,, i. e.,, by Proposition 1, o = AG. Let v,¢G@ (i =1, ...,n), yoe CX and

n
=My
i=1

It suffices to prove Ayo . In view of k < a there exist g;e 4, such
that oy = Vi (j =0,1,...,n). Let a mapping h: I - A, be deflned by
hi = (g1%y ...y gpt) for every te I.

Define fe 0™ as follows. For ae hI choose any i e h™'a and set fa
= @ol,; for any ae A"\hI let fa = g,i, where ¢ is an arbitrary fixed
element of I.

Using y, 2 0 = %, we see that f is well defined.

Proceeding as in the proof of L.emma 3 we prove that g, = fg, ... ¢,.
Since fe U, < A, and g¢,, ..., g,€ 0, We get g,e o as required.
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Sufficiency. We can assume that G is an upper order ideal. Let
fe U™ and r,,...,7,c 0. From 7;c o it follows that Ko € G. Designating
h =fr,...r,, we get

n
%5 =2 m x,.i.
1

=1
In view of fe U* we have x,e C%¥ and, therefore, x,¢ [G)*. From [G)*
< G* we get x,¢ @ and, finally, he 4, < o. Thus fe 4,, as we wished to
show.
COROLLARY 1. The relation o satisfies A, = O if and only if o = AF,
where F is a filter on C.

Proof. Let o = AG, where G is an upper order ideal in C;. For any
ye C; we have

4, = U {4, | neCi,n 2 y}.

This shows that ¢ = 4G = 4G°.
Let ¢ = A[G). By the same argument we get ¢ = A[G) = A[G)°. Thus

A, =0 =G =[G) = p =0 = o = 4[G),

where [G) is a filter.

Conversely, if G is a filter, then obviously {G}* =@ and 4, = U,= 0
by Theorem 1.

If I is finite, then any non-empty filter has a least element. Thus we
have the following result (proved in [18] for [I| < a < 8,; slightly
incorrect result for a < &, and |I| < 8, is in [2]):

COROLLARY 2. Let I be finite. Then A, = O if and only if o =0 or
o =4, with ye Cy.

4. The equality A, = U,. Let I’ be a polynomial class. It is natural
to study the following problem:

Characterize all relations o with 4, = P.

Such characterization was given in Corollary 1 for P =0 = U,.

Now we are going to characterize the o’s with A, = U, for finite £’s.

For infinite k’s the situation seems to be far more complicated. Using
Post’s results [16] it is possible to characterize A, = P for any polynomial
class P on a two-element set (e.g. A, =J was characterized in [21])
while nothing is known for a > 2. It seems that this is a rather difficult
problem.

TiHEOREM 2. Let 1 <k < min(a, R,). Then 4, = U, if and only if
o = AGQ, where G = O satisfies {G}¥ =@ and (G} +<0.

Proof. By Theorem 1 we have U, < 4, <= {G}¥ =0 and U,,, ¢ 4,
= {G}**! # . In view of Lemma 2 we have U, = C < 17, , for no closed
class C and the theorem follows.
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COROLLARY 3. For 1 <k < min(a, R,) the relaiional degree of U,
8 k+1.

Proof. By Theorem 2 we must find the least cardinality of I for
which there is G = C; with {G}* = @. Since |I| < k implies {G}**! = {G}*
=@, we have |I|>k+1. Thus let I ={0,1,...,k} and let 7,eC¥
(n = 0,1) be defined by

(¢ f)ets = {3,7} ={0,1,2}\{n} for i,jel, i #j.

Let G = C%uU{z,, 7,}. Since 7,N7, is the identity equivalence ¢, we
have te {G}*"! and {G}**! # @. Thus ¢ = AG satisfies 4, = U,.

COROLLARY 4. Let a polynomial class P have relational degree r. If
1 < k < R,, then the relational degree of PN U, is at most r + %k + 1.

This follows from Corollary 3 if we use the concatenation of rela-
tions [20].

5. The equational class generated by (4 ; U,>. In this section we will
characterize all algebras in the least equational class K (or primitive class
or variety) containing A = (4; F) with [F] = U,. To prove our repre-
sentation theorem we will start from Birkhoff’s characterization
K = HSP A (see e. g. [9], § 23).

In view of Theorem 1 it suffices to study the homomorphic images
of (p; F), where p +# @ and p is stable relative A or, equivalently, the
congruences on {g; F> with o = AG, where @ +# G < (; satisfies {G}* = @.
Let 6 be a fixed congruence on (p; F). Given g;¢ AT (i =1, 2), we set
E(g:1)9:) = {®mel | g1 = gy}

First we derive a necessary condition for 6.

LEMMA 3. Let 1< n <R, and let c e 0 and ¢;; = ¢,;(0) (p =1, 2;
j=1,...,m). If mye o, mye 0, and \m,INm,I| <k, then

(1) ZQ E(c¢y, cy) < E(my, my) => my = m,y(0).

Proof. Let ¢: I - A™** be defined for every ie I by
@l = (Cyy Ty evvy Coply Myl, Myl).
We claim that there exists fe 0®"*? such that
(2) fen oo =m; (1 =1,2).
A necessary and sufficient condition for this is
(3) (Cp1Ty vny Conly P1) = (Cquly +vvy Cuudy @J) = Myt = Myj

for every i, je I and p, qe {1, 2}. We will verify this condition.
First of all, ¢¢ = ¢j implies

(¢ 0) € 7oy N e AE AL Nat
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Now, if p = ¢, then (%, j)e %, glves already the required m,i = m,j.
Thus consider the case {p, ¢} = {1 2}. From (3, j)e %, (1 <1< n) we get

€yt = Cyj. According to the premiss of (3), ¢,;2 = ¢y;j and, therefore,
n

eyt = 6, te (Y E(cy,¢y) and by assumption e E(m,, m,). This and
=1

(%) J) € %y, finally give the required m,i = myi = m,j.

This proves that there exists f satisfying (2).

Note that there is such an operation with values only in m;IUm,I.
Since [m,IuUm,I| < k, this shows that such f exists in U, . Finally, applying
Cpi€ 0y Mye 0, € = Cy(0), fe Uy, formula (2), and the substitution prop-
erty, we obtain m, = m,(0).

Let P(I) be the set of all subsets of I partially ordered by inclusion.
Lemma 3 leads to the following definition:

Definition 1. An equivalence relation 6 on the set ¢ is a k-equiv-
alence if

1° m,; = my(0) = fm, = fm, for any f: A - A,

2° the set L = {E(m,, m;) | m; = m,(0)} is a non-empty filter on
P(I) satistying

E(my, my)e L, i mIumy,I| <k = m; = m,(0)

for every m,, mye .

LEMMA 4. Let 0 be a k-equivalence on g. Then 0 i8 a congruence on
<e; F).

Proof. Let L be the filter corresponding to 6, fe U{" and mye o,
my =myu(0) (p =1,2; 1 =1,...,n). Further, let h, = fm,
Because L is a filter and

n
lﬂ E(m,;, my) < E(hy, hy)
=1

we obtain E(h,, h,)e L.

Moreover, |h,IU,I| < |fA"| <k, hence, by definition, h, = h,(0)
as we wished to show.

Let Id(A) denote the set of all identities satisfied in 4 ([9], § 26).
Then we have the following representation theorem:

TILEOREM 3. Let A = (A; F) with [F] = U, (1 <k<|A|), B a non-
-trivial algebra of the same type, and K the equational class generated by A.
Then the following conditions are equivalent:

(1) Be K.

(ii) Id(A) = Id(B).

(iii) There are non-empty sets I and G < C; with {@}* =G and a k-
-equivalence 0 on AG such that B ~ (AG; F') /0.

Proof. (i) and (ii) are equivalent by definition, (i) = (iii) was proved
in Lemma 3, and (iii) = (i) in Lemma 4.
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Remarks. Let k¥ = a. Then any a-equivalence 6 is simply defined
by a non-empty filter L on P(I) and by E(m,, my;)e L <> m, = m, for
every m,, mye o. Thus {(p; U,>/0 is an extension of reduced direct powers
([9], §22, Definition 6) (reduced direct powers constitute the special
case o = AC,). Hence as a corollary we get Weglorz’s representation
theorem for Post-like algebras [26] (i. e. algebras in the equational class
generated by (A4; F) with [#] = 0). This in its turn extends a represen-
tation theorem for the equational class generated by a primal algebra
(i.e. (A; F> with [F]= 0 and a < 8, due to Wade [25], Rosenbloom
[23] and Foster [8] (see also [9], § 27, T5). In this special case the reduction
by 6 can be removed while for a > 8, this cannot be done [26].

Note that, for k¥ < a, in K are algebras whose lattice of congruences
is not distributive ([13] or [9], Example 5.70), thus Joénsson’s theorem
([13] or [9], § 39, T6) is not applicable. For k¥ = a it is applicable and
U, = IP(HSP,(A), where Py and Pp are the operators of the formation
of subdirect and prime products, respectively.
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