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Introduction. In [6] Green gave necessary and sufficient conditions for
Z,(X, #, 1, 1<p< ,to be a complete normed linear space for a positive
bounded charge space (X, &, p). But in [1] K. P. S. Bhaskara Rao and
V. Aversa have shown that the necessary part of Green’s result is not correct.
However, in [5] Greco partially solved the problem of completeness of
Z,(X, #, u). In this paper we give a complete solution of the problem using
a different method and we do not restrict ourselves to the bounded charge
spaces nor do we impose any restriction on p except that it is non-negative. We
also show that Z_ (X, &, u) is complete for every charge space (X, &, p). See
also [7] for some related results.

We follow mainly K. P. S. Bhaskara Rao and M. Bhaskara Rao [2] for the
notation and results which we use in our proofs. See also [1] and [4].

1. Definitions and notation. An extended real-valued finitely additive
function ux on a field & of subsets of a set X is called a charge, and (X, &, p) is
called a charge space. A charge space is called positive (bounded) if the charge is
positive (bounded). In the following we assume that u is a positive charge.

The set function u*: 2(X)— [0, 0] (#(X) denotes the power set of the set
X) is defined by

) p*(A) = inf{u(B): B> A, Be #}.

For f, g: X >R we write

f=gae [1] if u*{x: |f(x)—g(x)|>e} =0

for all ¢ > 0. A function f: X — R is said to be a null function if f = 0 a.e. [u].
A set A < X is said to be a null set if I, is a null function. We shall say that
a sequence { f,} of real-valued functions on X converges hazily to a real-valued
function f on X if

Hm p*{x: |f,(x)—f(x)) > ¢} =0 for all ¢>0.

n— oo
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A function f'is said to be T,-measurable if there exists a sequence {s,} of simple
functions which converges to f hazily. A simple function

s= )Y ¢;lg,

i=1

where c¢;’s are real numbers and {B,, B,, ..., B,} = & is a partition of X, is
called integrable if u(B;) < co whenever c; # 0, and the integral of s, denoted by

jsdu, is defined to be the real number ) c,u(B;). A real-valued function f on
i=1
X is said to be integrable if there is a sequence {s, } of integrable simple func-

tions, converging to f hazily, and
(Is,—Snldu—0 as n,m—co.

In [2] the functions of this type are called D-integrable.
Denote by Ly(X, #, u), or by Ly(u) for short, the linear space of all
T,-measurable functions and put

N ={feLy(): f=0 ae [u]} and L, = Ly(W/N.
For fe L,(4) and ¢ > 0 define .

Y(f, o) = c+u*{x: |f(x)| > c}.

¥(f, o)
f
1fllo = {clfol Y(f, o)
1

Now it is easy to see that convergence in this F-seminorm coincides with hazy
convergence ([2], 4.3.5).
For 0 < p< o0 put

L,(p) ={feLy(w: |fI” is integrab]e}

Define

if Y(f, ¢) < oo for some ¢ > 0,

otherwise.

and
Z,(W) = Ly(u)/N.
The space Z,(u) is equipped with an F-norm || - ||, which is defined as follows:
T (If1Pdu for 0<p<l,
& (f1f1Pdu)t’»  for 1<p<oo.

A function f: X - R is called essentially bounded if there exists a positive real
number k such that

H{x: 1f() > k) = 0.
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Denote by L_(p) the linear space of all essentially bounded T,-measurable
functions on X and put

ZoW) = L, (u)/N.
The space %, (u) is equipped with the norm ;

Ifll, = inf{k > 0: u*{x: |f(x)| > k} = 0}.
A sequence {A4,}, where 4, c X, is said to be u-Cauchy if
p*(4,AA4,)—»0 as n,m— .

2. Completeness of %, 0 < p < co. Before proving our main theorem we
need the following three lemmas

LEMMA 2.1. If A, = X and the sequence {I, } converges hazily to f, then
f=1, ae. [u] for some A< X and pu*(A,AA)—-0.

Proof. We shall show that there is a set A = X such that

p*{x: |f(x)—I,(x)]>1/k} =0 for all k> 1
Consider

= {x: f(x)e(—o0, —1/k)u(1/k, 1 =1/k) U (1 + 1/k, 00)},
where k > 3.
Since B, c {x: |f(x)—1,(x)| > 1/k} for all n, we have u*(B,) =0. Let
= {x: $ <f(x) < 1+4}.

Then

{x: |f0)—1,0) > 1/k} = B, for all k> 3.
Therefore . -

p*{x: |f(x)—1,(x)) >1/k} =0 for all k> 1.

Thus f=1, ae. [u]. Hence {I,} converges hazily to I, or, equivalently,
u*(A,AA)-0.

LEMMA 2.2. Suppose for every u-Cauchy sequence {A,} = ¥ with
u(A,) < oo there exlsts A c X with p*(A,AA)—0. Then for every sequence

{B, } c F with z u(B,) < oo there exists B < X such that
n=1
(i) u*(B,\B) =0 for all n;
(i) u*(B) < ) u(B,).

n=1r

Proof. Let

{B,} =« ¥ with i u(B,) < oo.

n=1
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Put
k
Ak = U B”.
n=1
Then u(A4,) < o and {4,} is a u-Cauchy sequence in & since
w(A A4y 4 1) < p(By+ )
and
k+1-1
WAAA )< Y p(A,AA, ).
n=k
Take B < X with u*(4, AB)—0. Now,
K*(4\B) < p*(4, AB).

But u*(A,\B) is an increasing sequence of positive real numbers. It follows that
u*(4,\B) =0 for all k. This yields (i).
For (ii), notice that

u*(B) < p*(A4, v (4, AB)) < p(A) + p*(4, AB)

k
< ). u(B)+u*(4,AB).

n=1
Since u*(A,AB)—0, we get (ii).
LeMMA 2.3. Let 0 < p < oo and let {f,} be a Cauchy sequence in &, ()
which converges hazily to f. Then

fe£,w and |f—fl,—0.

Proof. We shall show that if {f,} is a Cauchy sequence in %, (u),
0 < p < oo, then it satisfies the following two conditions:
(i) The charges 4, on & defined as .

I(F)=(1fJPdp, Fe%,
F

are uniformly absolutely continuous with respect to y, i.e., given ¢ > 0 there
exists 6 > 0 such that A,(E) < ¢ for all n whenever u(E) < é.

(i) For each & > O there exists E,e # such that
. u(E,) <o and 4,(E) < e for all n.

The assertion follows from this by Theorem 4.6.10 in [2]. (In fact, that
theorem is formulated in [2] for 1 < p < oo, but the proof can be easily
adapted to the case where 0 <p<1) . :

We first prove (i) and (ii) for 0 < p < 1. Fix ¢ > 0. Since {f,} is a Cauchy
sequence in %, (u), there exists N > 1 such that
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(1fu—fulPdu <¢/2  for all n,m>=N.

Now,

Ilfl"dﬂ Ilf —fnlpdﬂ+IIfNI’du for all n> N.

Since f,, ..., fy€ L (), there exists é > 0 such that
A(E), ..., Ay(E) < &/2 whenever u(E) <6

(see [2], Theorem 4.4.13 (xi)). It follows that 4,(E) < ¢ whenever u(E) < é and
n is arbitrary. This proves (i) for 0 < p < 1. With the same notation, there exists
E,e# such that u(E) < oo and A,(Ej) <e¢/2 for n=1,2,..., N (see [2],
Lemma 4.4.15). This yields (ii) for 0 <p<1. For 0 <p < oo the same
argument goes through except that we use the inequality

(£ |fol? dp)'’? < (’Is |fa =Sl dp)'’® +(‘I5 | fl? dp)'’P.

Now, we are ready to prove our main theorem. Notice that, in the case
1 < p < oo and u(x) < oo, the following theorem is essentially due to Greco
([5], Corollario 2.5) by a different method (see Remark 2.5 below).

THEOREM 2.4. Let 0 < p < 00. Then <,(u) is complete if and only if for every
pu-Cauchy sequence {A,} ¢ F with pu(A,) < o there exists A< X with
u*(4,AA)-0.

Proof. Necessity. Let {4,} =« & be a pu-Cauchy sequence with

u(A,) < . Then {I,} is.a Cauchy sequence in Z,(u). Hence, by our
assumption of completeness, there exists fe &£ »(1) such that I1,,—fIl,—0. By
Theorem 4.6.10 of [2], {I, } converges hazﬂy to f. This yields, in view of,
Lemma 2.1, the desired conclusion.

Sufficiency.
Case p = 0. Let {f,} be a Cauchy sequence in %,(u). By passing through
a subsequence, we may assume that

pHxeX: [y —firi( > 277 <377,

Define |
= {xeX: |f,()—for 1 () > 27"}

Since f,’s are T;-measurable, without loss of generality we may assume that f’s
are simple functions to ensure that A,e%. Then

Z u(4,) < z 37"=271-37¢"D  for all k.

Thus, by our assumption and Lemma 2.2, for each sequence {A )k,
k=1,2,. ,wecangetasethXsuchthat '
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(i) u*(A4,\By), =0 for all n > k;
i) p*(B) < ¥ (4,) <271-370D,

n=k
Without loss of generality, we may assume that B, — B, ., for all k (because,
otherwise, take B,, B, nB,,...). Let

Then, clearly, u*(B) = 0.
We shall now define our function f to which {f,} converges hazily.
If x € B, define f(x) arbitrarily. If x¢ B, let k(x) be the smallest k such that
x ¢ B,. Note that if

m—1
x¢-U A, and m>n,

then
1

@) 10 —f0l < Y 27 <2700,

Now, consider the following two cases:

Case 1. x¢ ) A,. Then, by (iii), {/,(x)} is a Cauchy sequence of real
n=k(x)

numbers. Define

S () = lim f,(x).

n—* o

Case 2. xe (J A,. Let n(x) be the smallest n > k(x) such that xe A4,.

n2k(x)
To prove that {f,} converges hazily to f define

k k
C,=Bu( Ul A\B,) U ( Uz A\B,)U...U(4,\B)U B,.

In view of (i) and (ii)) we have
#*(C) < p*(BY <271-37% D,

We claim that x¢C, implies |f(x)—=f,(x)] <2 *~1,
Indeed, we have k(x) <k. If x is as in Case 1, we get

x¢ | 4,

nzk

and so, in view of (iii),
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| f(X)—f(x)| = lim | f,(x)—f,(x)] <27V,

n—+aoc

Now, let x be as in Case 2. Since x ¢ C,, we have k(x) < k < n(x). Hence, by (1ii)
|fG)—f)l < 27471,

and so the claim is proved.

Since u*(C,) — 0 as n — oo, we have f, — f hazily. This proves the sufficiency
for p=0.

Case 0 <p < . As easily seen, a Cauchy sequence in Z,(u) is also

a Cauchy sequence in %,(u). Hence the assertion follows from the case p =0
and Lemma 23.

Remark 2.5. We shall compare the condition of Theorem 2.4 with
Greco’s condition (xx) (see [5], p. 244). Define

={Ec X: (Ve>0)(34, Be F)B< Ec A and p(A\B) <&}

and denote by i the unique extension of u to a positive charge on the field
Z (the Peano-Jordan completion of p). Then Greco’s condition reads as
follows:

(#+) For every increasing sequence {E,} c & there exists Ec.# with
ME,AE)—0.

By Theorem 1.1 of [3], under the assumption that u(x) < oo, (*#*) is
equivalent to

(=*)’ g is Cauchy-complete.

We shall check that (xx)' is equivalent to the following condition:

(=*)’ .-For every u-Cduchy sequence {A4,} ¢ ¥ there exists A = X with

u*(A,AA4)—-0.
Indeed, since i = u*|.#, (»+) implies (x*)”. To prove the converse, let first

{A,} = F be a p-Cauchy sequence and take A as in (**)". Fix ¢ > 0 and choose
n, and Be # with AAA, < B and u(B) <¢. Then

A, \BcAc A, B and (A4, v B\(4,)\B)=

Hence AeZ. The general case follows from this since, given E,e #, we can
choose A,e # with A, < E, and ji(E,\A,)—0.

We shall illustrate our results by three examples.

ExampPLE 1 (cf. [1], Example 2). Let X = [0, 1], &# be the field generated
by all open sets of X and u be any positive finite countably additive measure on
Z. In the notation of Remark 2.5, # is the o-field of u-measurable sets in
X and j is a positive regular measure on #. Hence (*+) is satisfied since
u(X) < oo. It follows from Remark 2.5 that the condition of Theorem 2.4 is
satisfied. Therefore Z,(u), 0 < p < 00, is complete.
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ExXaMPLE 2. Let X = [0, 1], let
7 = {U [al" bi): neN’ a; < bi’ a;, biE(O, 1)},
i=1

and u be the Lebesgue measure restricted to & . Then (X, &, u) does not satisfy
the condition of Theorem 2.4, and so Z,(X, #, u) (0 < p < 0) is not complete.
Indeed, let {r,, r,, ...} be an enumeration of the rationals in [0, 1) and put

A,l = [rn_2-(n+2)’ r,,+2""+2’)nX, n= 1’ 2’
Then .

A,eF and ) u(4,)<1)2.
n=1

Suppose (X, &, u) satisfies the condition of Theorem 2.4. Then, by
Lemma 2.2, there exists a subset A < X such that '

(i) p*(4,\A) =0 for all n;

(i) p*(4) <1/2

Property (i) implies that 4, N A is non-empty for all n > 1. Hence A4 is
dense in X. Therefore, u*(A4) = 1, which contradicts (ii).

ExaMPLE 3 (cf. [3], Example 2.5, and [2], p. 125). Let X = N, the set of
positive integers, and let # = #(N). Define u on F as follows:

Y 27" if A is finite,
MEER o
2— ) 27" if A° is finite.
neA€

Extend u to # as a positive real-valued charge (see [2], 3.3.4). Then (X, £, u)
does not satisfy the condition of Theorem 2.4. Indeed, put 4, ={1, 2, ..., n}
and suppose u(4,\A4) —0 for some A c X. Then 4 = X, whence u(4\4,) > 1.

3. Completeness of £, . The next result generalizes Nota 1 in [S] and,
partially, Proposition 4.7.9 in [2].

THEOREM 3.1. The space L. (X, F, y) is complete for every charge space
X, #, ).

Proof. Let {f,} be a Cauchy sequence of functions in %, (u). We shall
define a function fe %, (u) such that f, —»f in &£, (u). By passing to a subse-
quence, we may assume that

Ifa=fa+illo <27".
Let
Ay ={x: |f(0)—for () >27"}, n>1.
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Then u*(A4,) =0 for all n. ‘Moreover, as in the proof of Theorem 2.4, if -
m—1
x¢ ) A, and m>n,
i=n

then
| o) —fuX) <27¢7D,

Now, we define the desired function f.

[ o]

Case 1. x¢ () A,. Then {f,(x)} is a Cauchy sequence of real numbers.

n=1
Define

J(x) = lim f,(x).

Case 2. xe | 4,. Let n(x) be the smallest n such that xe A,. Define

n=1
J(x) = fan(x)- _
To show that f,—f in &, define

k=1
Then p*(H,) = 0. We claim that x¢ H, implies
|£a()=f ()l <2707,

This is clear if x is as in Case 1. Let x be as in Case 2. Since x¢ H,, we have
n(x) > n, and so |f,(x)—f(x)] < 2~®~D. Thus, the claim is proved.

Now, since u*(H,) =0, it follows immediately that f, —f hazily and f is
essentially bounded. Therefore, in view of Proposition 4.6.13 in [2], fe &, (u).
Moreover, | f,—f|,—0. Thus f is as desired.

Remark 3.2. We have obtained our results only for positive charge
spaces. But this restriction on u can be removed if we work with the total
variation of u, denoted now by |u|. This change will not affect our argument
anyway because the definition of the Z,-spaces, 0 < p < oo, over general
charge spaces only involves |u|. The total variation |u| is defined on F as
follows:

|ul(A) =sup{ Y |u(B)l: {B,, B,, ..., B,} = F is a partition of A}.
i=1
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