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A topological space is called a generalized continuum if it is a con-
nected, locally compact, separable, metric space. A topological space
is called a semi-continuum if any two of its points lie in a sub-continuum
of the space. It is well known that if X is a locally connected generalized
continuum and U is an open connected subset of X, then U is a semi-
continuum (in fact U is arcwise connected). In this paper (}) we show
that this property characterizes local connectedness for generalized
continua. That is, if X is a generalized continuum with the property
that each of its open connected subsets is a semicontinuum, then X is
locally connected. A corollary of this result (2) answers a question raised
in [2] (see also [1]). At the end of the paper we give an example which
shows that this result does not hold for non-metric continua.

Definition 1. A topological space is said to be a continuum if it
1s a compact, connected, metric space.

‘Definition 2. A topological space X is said to be a semicontinuum
if given any two points z, y e X, there exists a continuum K < X such
that z, ye K.

Definition 3. A topological space is said to be a generalized con-
tinuum 4f it is a connected, locally compact, separable, metric space.

Definition 4. A topological space X is said to be locally connected
at a point p e X if given any neighborhood U of p, there exists a neighbor-
hood V of p such that V is contained in the component of U containing
p. If X is locally connected at each of its points, then X is said to be
locally connected.

(*) This research was conducted while the author was participating in an
exchange of scientists administrated jointly by the Polish Academy of Sciences and
the National Academy of Sciences (U.S. A.).

(2) In the original version of this paper the author proved only this corollary.
The author is indebted to R. Duda for suggesting the more general theorem and also
for greatly simplifying the example given at the end of the paper.
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The following theorem is proved in [3] (theorem 12.1, p. 18). Con-
vergence of sets is understood to be in the sense defined in [3].

THEOREM 1. If a generalized continuum X fails to be locally connected
at some point p e X, then there exists a spherical neighborhood R with center
P and an infinite sequence of distinct components N,, Ny, Ny, ... of
X n CI(R) converging to a limit continuum N which contains p and has
no point in common with any of the continua N,, N,, N,, ...

Definition 5. A closed subset ¢ of a generalized continuum X is
said to be a cutting of X if X\ C contains two open sets M, and M, such
that M, v M, = X\C and M, n M, = 0.

Definition 6. A cutting C of a generalized continuum X is said
to separate two subsets X, and X, of X if X, u X, « X\C and the sets
M, and M, of definition 5 may be chosen so that X, <« M, and X, c M,.

Definition 7. A disjoint family {C,: ae I'} of cuttings of a genera-
lized continuum X is said to be non-separated if given any two cuttings
C, and Oy in the family and any two open subsets M, and M, of X\C,
such that M, u M, = X\C, and M,n M, =@, it follows that either
Csc M, or Csg = M,.

The following theorem is a corollary of theorem 2.2, p. 45 in [3]:

THEOREM 2. If {C,:aeI'} is an uncountable, disjoint, non-separated
family of cuitings of a generalized continuum X and qe X\|J {C,:ael},
then there exist cuttings C, and C, in the family such that C, separates {q}
and C,.

THEOREM 3. If X is a generalized continuum with the property that
each of its open connected subsets is a semi-continuum, then X is locally
connected.

Proof. Suppose X with metric ¢ is as above and that X fails to
be locally connected at some point peX. Then let the continua N,, N,,
N,,... and N be as in theorem 1 and let ¢ # p be another point of N.
Let r be a positive real number such that » < o(p, q) and for every f, where
0<t<r, the set U; = {xeX: o(x,p) <t} has compact closure. For
every real number ¢ such that 0 <? <r we define the following sets:

Uy = {weX:o(z,p) <t}

P; = the closure of the component of U, containing p,
K; = P\U,,

Q¢ = the component of X\P; containing g,

C; = Cl(Q;) N K;.

We now observe two rather obvious facts. First, by the choice of
N, N,, Ny, N,, ... and ¢, none of the sets C; separates {p} and {q}. Second,
since for each ¢ where 0 <t < r and for any xe¢ C; we have o(x, p) = t,
it follows that the C,s are disjoint. Moreover, we claim that each of the
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sets C; is a cutting of X. For suppose that this were not the case for some
t with 0 < ? <r. Then the open set X\ C; would be connected and thus
by hypothesis it would contain a continuum B such that p, geB. Since
B contains ¢ and meets P;, it must contain a continuum which is irre-
ducible with respect to these two properties, i.e. there is a subcontinuum
A of B such that A4 is irreducible with respect to containing ¢ and meeting
P,. Now for each positive number ¢ such that ¢ < o(q, P;) let us define
a set '
Ve ={xeX: o(w, P;) < €}

(note that since P; — P, for every 0 <t <r and qeX\P,, we must have
o(q, P;) > 0). Also for each positive real number ¢ < p(q, P;) we define
a continuum

E, = the closure of the component of AN\CI(V,) containing q.

Then for each ¢ we have E, n Cl(V,) # O (if F is a component of
an open subset U of a continuum A, then the closure of E meets the
boundary of U). Thus for each ¢ we have o(E,., P;) < e. Moreover, the
E.s are nested and each of them contains ¢. Thus OI(U {B,: 0 < ¢
< o(q, Pt)}) is a subcontinuum of A which contains ¢ and meets P;.
The irreducibility of A now allows us to conclude that CI(U {B,:0 < ¢
< o(gq,Py)}) = A. Since E, c @, for every ¢ the above implies that

(1) 4 < CL(Q)
Now let ¢g,;¢ A n P;. Since A n C; =@ and A < Cl1(Q;), we must have
(2) An Kt = .

Thus q,¢ P\K;, i.e. q,eU;. Let E be the component of 4 n U,
containing ¢,. Then CI(E) meets the boundary (in 4) of U;n A, i.e.
there exists ¢q,e C1(E) which is on the boundary of U;n A. But clearly
g.¢ Py and ¢,¢U; (o(p, q2) = 1), i.e.- g, A n K;. This contradicts (2) and
establishes our claim. Thus each C; is a cutting of X.

We now claim that the family {C;: 0 <?<r} is non-separated.
For let {, be a fixed real number such that 0 < ?, <7 and let ¢ be another
such number. If ¢ <{,, then we have C;c P,c X\C(y (P;c P, and
P; n C;y = ). Since P, is connected, it is clear that for any realization
of of X\C; as the union of open sets M, and M, where M, n M, = @,
we must have P, = M, or P, M,. Thus either C; =« M, or C;, < M,.
Now suppose that ?, <t Then P,o c P; and so X\P;c X\P,o. This
implies that Q; < X\Pto. Since Oy N P,y = O, we also have (; X\P,.
Thus
(3) Cic @ v G = XN\Py = XNCy.

But Q; = Q;u C; = C1(Q;). Therefore @, v C; is connected. So C; is
contained in a connected subset of X\C,. Now we can conclude, as
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above, that if M, and M, are open subsets of X\C; such that M, v M,
=X\C;, and M, N M, = @, then either O; = M, or C; = M,. This estab-
lishes our second claim.

Thus {C;:0 <t<r} is an uncountable, disjoint, non-separated
family of cuttings of X. Certainly ¢¢(J {C:: 0 <t < r}. Theorem 2 then
implies that there are 0y and Cy, in {C;: 0 < ? < r} such that C; separates
{g¢} and C;,. First observe that we cannot have ?, <i,. For if this were
the case we would have, as in (3) above, Ct2 c Q,z v 0,2 cXu C;,. But
also {q} = @, v Cy,. Thus Cy, v {q} = @, v Cy,, a connected set in the
complement of C;. So we must have ¢, <?,. Now let M, and M, be
open subsests of X\C(; such that M, v M, = X\C;, M,n M, =,
{q¢} = M, and 0.:2 < M,. Since ¢, <, we have Py, X\C’tl. Thus, since
P,z 1s connected and P,z NnNM, +#0 (C',2 c Ptz), we must have Pt2 cM,.
But peP;. Therefore C, separates {p} and {¢q}, contradicting the fact
that none of the Cys separate {p} and {g}. This contradiction establishes
the theorem. ‘

In [2] (see also [1]) the following question is raised:

Suppose X is a continuum with the property that every open connec-
ted subset of X is a semi-continuum. Does it follow that X is locally
connected ?

Obviously every continuum is a generalized continuum. Therefore,
we obtain an affirmative answer to this question as an immediate corol-
lary to theorem 3:

COROLLARY 1. If X s a continuum with the property that every open
connected subset of X s a semi-continuum, then X s locally con-
nected.

It is perhaps interesting to note that this corollary fails in the non-
metric setting. Below we give an example of compact connected Haus-
dorff space with the property that each of its open connected subsets is
arcwise connected, but which fails to be locally connected.

The underlying set of our example X consists of the 2-simplex in
E? (real Euclidean 2-space) bounded by the triangle with vertices (0, 0),
(0,1) and (1,0). We topologize X as follows:

If (v,y)eX and « # 0, then (z,y) lies on a segment joining two
points of the form (0, ¢) and (¢, 0) where ¢ # 0. A basic neighborhood
of (r,y) then consists of an open subinterval of this segment which
contains (x,y) and does not contain (0, ¢). Now suppose we have some
(0,y)eX. Let ¢ >0 be given and for ¢ =1,2,...,n (n some positive
integer) let F'; denote a closed subset of the segment joining some two
points (¢;, 0) and (0, ¢;) where ¢; # 0. Then F',, F,, ..., F, and ¢ determine
the basic neighborhood {(z, w)eX: |[y—w| < e\ (F,u F,u...uU F,) of
(0, y). It is not difficult to verify that X has the properties alleged
above.



LOCAL CONNECTEDNESS 85

REFERENCES

[1] 8. Bergman, R. Duda, B. Knaster, Jan Mycielski et A. Schinzel, Kazi-
mierz Zarankiewicz, 2. V. 1902 — 5. IX. 1959, Colloquium Mathematicum 12
(1964), p. 277-288.

[2] B. Knaster, Sur les notions de coupure et de séparation dans les continus non
péantens, Annales Polonici Mathematici 16 (1937), p. 197.

[3] G.T. Whyburn, Analytic topology, American Mathematical Society Colloquium
Publications 28, revised printing, 1955.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 20. 12. 1968



