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0. Introduction. Given an ideal J of subsets of the real line R, let 3* be the
family of all subsets 4 of R such that for every K e3J there exists ae R with
(A+a)n K = 3. For 3 being the ideal R of first category subsets of R, Galvin
et al. showed in [4] that K* is the ideal of strong measure zero subsets of the
real line. Carlson [2] examined the family £*, where £ is the ideal of Lebesgue
negligible subsets of R. In particular, he proved that it is relatively consistent
that £* is the ideal of countable subsets of the reals, the result that corresponds
to a well-known theorem of Laver [6] on the consistency of Borel’s Conjecture.
In this paper we investigate some general properties of the operation *. It will
show some analogy with the operations used for the construction of Lusin or
Sierpinski sets. We apply this operation to the ideals of bounded subsets of the
real line and to the ideal of subsets of the real line with finite Lebesgue measure.

. We will use the standard set-theoretical notation and terminology, e.g., the
cardinality of a set X is denoted by |X|. For any cardinal number » let [ X]~*
(resp. [X]<*) denote

{Ac X:|Al <x} (resp. {4 S X:|A] < x}).

For a given set X let #(X) denote the family of all subsets of X. For
3, 3§ 2(X) we will consider the following cardinal numbers:

add(3) = min{|2]: ¥ =3, | ¥ ¢3},
cov(J) =min{|Z: <3, JZ =X} or 0 if |JI#X,
non(3J) = min{|A4]: A¢3}, -
cf(3) = min{|Z|: ¥ =<3 VAe3 IBeZ A < B},
add(3, 3) = min{|Z]: L = IA X ¢3).

We say that # is a base of J if # = 3 and for every A€ 3 there exists
#3B 2 A. By this definition the minimal cardinality of a base of 3 is cf(J).
For any sets A, B, let B denote the set of all functions f: A—B. In
particular, “w is the Baire space. If f, ge*x, where 4 and x are cardinal
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numbers, then, by definition, f < g iff there exists an ordinal a < 4 such that
for every « < ¢ <4 we have f({) <g(¢). Let

d=min{|%|: ¥ S0 AVfe®w IgeX [ <g}.

Let £ denote the o-ideal. of Lebesgue negligible subsets of R, and let
K denote the o-ideal of meagre subsets of R. Let A (resp. 4,) denote the
Lebesgue measure on R (resp. R"), and A* (resp. 4,) denote outer (resp. inner)
measure on R. Let

25° = {X = R" A*(X) < oo}.

We say that a subset X of R is of strong measure zero if for any infinite sequence
of positive reals ¢, ¢,, ¢,,... there exists a sequence of intervals I, I,, I,,...
such that
diam(l) <¢; foriew and Xc|JI.
iew
Let € denote the o-ideal of sets of strong measure zero.
For subsets A, B of an abelian group <G, +, 0> let

A+B={a+b:aec A, beB}.

Similarly we define A—B, — A4, and —3 = {— A4: Ae 3}, where J is a family of
subsets of G.
If X =G and (G, +,0) is an abelian group, then we define

add,(3) = min{|4]: A< G 3Be3 A+B¢3J},
cov,(3) = min{|4]: A< G 3Be3 A+B =G},
cf,(I) = min{|2|: VAe3 3teG IBeX A+t < B},
add(3, 3) = min{j4]: 3BeJ A+B¢3).

We say that & < 3 is a transitive base of J if for every A€ J there exist
Be# and te G such that A+t < B. By this definition the minimal cardinality
of a transitive base of 3 is cf(J).

The symbol I LJ means that there are Ae3 and BeJ such that
X =AuUB. 1t is well known that R L £ Let

I={Ac X: X\Ae3}.

We will use the following notions (see [5]):

DerNITION 0.1. Let (P, <,)> and {Q, <,) be two posets. A pair of
mappings {a, B> is a Galois connection over P and Q iff : P—Q, f: Q —» P and
the following two conditions hold:

(1) If x<,y, then a(x) >,a(y). If x <,y, then B(x) =, B(y).

(2) poa(x) =, x for xeP and aof(x) =, x for xeQ.
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DErINITION 0.2. Let (P, <) be a poset. A function y: P— P is a closure
operator iff the following three conditions hold:

(1) If x <y, then x(x) < x(y)-

(2) x < x(x) for each xeP.

(3) xox =1x

We will use only Galois connections of the form {a, a) over {P, <,)
={Q, <,). It is easy to verify that aoa is then a closure operator and
®oaon = A.

1. Some examples of Galois connections. Let X bt a nonempty set. Let
P(X)={3cP(X):VAe3I VBc A Be3J}.
Notice that if JeP(X), then
add(3J) < cov(J), non(J) < cf(J), add(3I, J)=add(3J),
add(Z2(X)\{X}, J) = cov(3J),

add(3) is a finite or regular cardinal; if 3 contains points, then
add(3) < non(3J). For more on the cardinals add(3), non(3), cf(3J) for I = K or
L see [3].

Define the function #: 2(X)x 2(X) - P(X) by

F(3,J)={A<X: VBeJ AnBeJ}.
For a given 3e?(X) we define the function #3: P(X)-P(X) by
F3J)=F3,3J). .

PrROPOSITION 1.1. If JeP(X), then the pair {F3, F is a Galois
connection over {P(X), < ). Moreover, if 3,, J,€ P(X), 3, L3,, 3, is an ideal
and 3 < J,, then F3(3,) = 3J;.

Proof. The proof of property (1) of Definition 0.1 is obvious. To see (2) we
claim that .
VAeJ VBe F3(J) AnBe3.

Let AeJ, Be#3(J). Then for every CeJ we have BN Ce3J; hence, in
particular, Bn A€3. So the claim is true, and J < #3(F3(J)) for every J.
Suppose now that

X=AuUB, Ae€J,, BeJ, and AnB=0.
If Ce#3(3,), then CNnBeJI < J,, so
C=(CnA)u(CnB)e3,.

Hence the proposition is proved.

For a fixed cardinal x let £, = F®°" Tt is clear that £, (R) is the ideal
generated by Lusin sets. By 1.1 the operation £, has the property

£,0£0f =£, .
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The second part of 1.1 applied to £, and ideals & and £ states that Lusin sets
are negligible and Sierpinski sets are meagre.

Notice that the notions introduced above have transitive counterparts in
abelian groups, e.g., transitive counterparts of add, cov, cf are add,, cov,, cf,,
respectively. There exists also a transitive version .of the function #.

Let (G, +, 0) be an abelian group. Let

1(G) = {3 P(G): VAe3 VieG A+teG).
Notice that if 3, Jet(X), then
add(3J) < add,(3), ,add(3, 3J) < add,(3, J),
cov(J) <cov,(J), cf(I<cf(J) add (3, J)=add,(3J),
add,(Z(G)\{G}, 3) = cov,(J).
Define the function #,: 1(G) x 1(G) —t(G) by
F(3,IJ={AcG: VBeJ 3teG (A+t)n BeJ}.

Analogously we define & for Je1(G).

PROPOSITION 1.1'. If 3 €1(G), then the pair (F3, F?}) is a Galois connection
over {t(G), =). Moreover, if J,, 3,€1(G), 3, L 3,, 3, isan ideal and I = J,,
then F3(3,) = 3, -

The proof is an easy modification of the proof of Proposition 1.1.

ProposITION 1.2. If 3, JeP(X) (resp. 3, J€1(G)) are ideals and I LJ,
then

F3,I)=3 (resp. #,(3,3I)=73).
In particular,
FR,Y9=F R, )=, F(L R/)=F,(2,8=2.
Proof. The inclusion 2 is trivial. Let
Ae3, Bel, AuB=G and Ce#Z,(3,3J).
Then there is te G such that
C+t=(C+t)n A)u((C+t)n B)e3.
Hence the second inclusion also holds.
Define_the function *: 7(G)—1t(G) by
3* = Z,({9}, J).
By Proposition 1.1’ we have J*** = 3*. Obviously,
3*={A<G: VBe3 3teG (A+t)n B =0}
={A < G: VBe3 A—-B # G}.
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The operation * can be considered not only as a particular case of #, but also
as a case of the operation

%, 1(G) x1(G)—>(G)
connected with the second form of the above notation for 3*:
%(3,3)={A<=G: VBeJ A+Be3J}.
Let
(3,3 ={A=G: VBeJ A—Be3J} =%,3, -3J).
It is easy to see that
3* = S(2(G\{G}, J),
and if J= —3, then
J* = 9(2(G\{G}, J).

ProOPOSITION 1.3. If J3€1(G), then the pair (943, 47) is a Galois connection
over {t(G), ). If 3= —3, then the pair (%9, 97) is also a Galois connection.

Proof. We omit the proof of property (1) of a Galois connection. In order
to prove the second property we claim that

VAeS VBe%¥(3) A+BeS.

Let Ae and Be%}(3). Then B+ A€eJ for any CeJ; hence B+ A€3.
The proof of the second statement is analogous.

Define the function g: ©(G)— 1(G) by
gD =93, ) ={A<G: VBe3 A+Be3).

The operations £, and * are the projections of & (resp. &, or 4,), and by
1.1, 1.1, 1.3 they are Galois connections. The operation g is the diagonal of ¥,
and, unfortunately, in general it is neither an operation of closure, interior nor
a Galois connection. (See the remark below Corollary 5.6.)

PROPOSITION 1.4. For any 3e€1(G) we have g(3) = 3, and if 3 = —3, then
g9(3J) € I N 3I*. Moreover, gog = g.
Proof. It is sufficient to prove that

9(3) < 9(9(3)).
Let Aeg(3). We claim that
VBeg(3) A+ Beg(J).
Let Beg(3J). For every De3, B+ De3J. Since Aeg(J), we have
A+ (B+D)e3,
so (A+B)+De3J for every DeJ. Therefore A+ Beg(J).
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Notice that the Galvin—Mycielski-Solovay theorem [4] may be for-
mulated in our notation as follows:

K|*=0C.
Recall that Rothberger in [8] proved that cov(R) < non(€). The following
proposition is a generalization of this inequality:
ProposITION 1.5. If 3, Jet(G), then

add,(3, J) < non¥%,(3, 3J).
In particular,
add,(3) < non(g(3)) and cov,(3) < non(3I*).

Rothberger’s inequality is a consequence of the last inequality for 3 = &
and of the Galvin—-Mycielski-Solovay theorem.

Sierpinski proved in [9] that £, (R) < €. In fact, his proof together with
the Galvin—Mycielski-Solovay theorem gives a stronger result.

PROPOSITION 1.6. #,([R]=°, R) = # ({9}, R).

Proof. Let Ae #,([R]<®, K). We claim that 4€@. Let ¢, > 0 for i€ w. Let
{g;: i < w} be the set of rational numbers. Let g;,eI,;, where I,; is an open
interval such that A(I,;) = &,;. The set

X =-R\ UIZi

iew
is meagre. By assumption there exists te R such that
[(A+t) N X| < w.
Let (A+t)n X = {r;: i <w}, r;el,;+, be intervals, and A(I5;4+;) = €3;41. Of
course,
A+t I,

so A+teC and also A€C.
Notice that the following inclusions hold:
£,8)c8, £, (@)cKk €Cc8 LcK
(see 1.1 and 1.1).

2. The cardinality of sets in & (3, J). The classical theorem of Sierpinski
on the existence of Lusin and Sierpinski sets can be generalized as follows:

ProrosITION 2.1. If 3, JeP(X) and

cf(J) = cov(J) = » < non(3J),

then there exists Ae # (3, J) such that |A| = x.
We omit an easy proof of Proposition 2.1 (cf. the proof of 2.1’ below).
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By the Galvin-Mycielski-Solovay theorem, {* is a o-ideal. T. Carlson
asked if £* is an ideal. Let BC (the Borel conjecture) mean “€ = [R]<“”. Laver
proved in [6] the consistency of BC, and Carlson proved in [2] the consistency
of “€* = [R]<“”. But under some natural set-theoretical assumptions (e.g.,
CH, ie., the continuum hypothesis) there are uncountable sets in € (see [1])
and in £*. The following proposition is a common generalization of these facts
and is a transitive counterpart of 2.1.

ProrosiTION 2.1'. If 3, Je1(G) and
cf(J) = cov(J) = » > o,

then there exists X e # (3, J) such that |X| = x.

Proof. Let {B,: { <x} =3 be a base of J, i.e., for each 4€J there is
¢ < x such that 4 < B,. Define two sequences

{t: £<x}=G and {Q,: {<x}<s2(G)

such that if (e {, then Q. & Q,, 1Q,| <[], and (B, +t) N Q€ 3. Set @, = F and
to = 0. For limit ordinals y < x let
Q,= U Q.
£<y

Obviously, |Q,| < sup|¢| < Iyl. By 1.5,
% = cov(J) < cov,(J) < non(J*) < non(#F (3, J)),
so Q,€# (3, J). Hence there exists ¢, such that
(B,+t)nQ,e3.
Suppose that Q, is defined. Let
q¢Q,v | (B,+1t,).

n<é
Such 3 g exists by cov(J) = x. Let Q. = Q, U {q}. Obviously, Q;.,€ F (3, J).
Let t;,, be such that (B;,,+;,1) N Qs €3, Let
X = U Q:n
g<x
Of course, | X| = ». We claim that X € #,(3, J). It suffices to see that for every
¢ <x we have (B,+t)n Xe3. If ge X\Q,, then q¢ B,+t,, so

(B +t)Nn X = (B, +t) N Q€.

CoROLLARY 2.2 (J. Cichon). (CH) There exists X € 2* such that A,(R\X) = 0.

Proof. Let {C,: { < w,} be an enumeration of all Borel sets of positive
measure. Then use an argument similar to that in the proof of 2.1’. The only
difference is the requirement

a€CAQ: U (B,+1,).

nsé

2 — Colloquium Mathematicum LVIL 2
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COROLLARY 2.3. ([R]=®)* 2 KU LU [R]<?".
Proof. We ought to prove the existence of
X e([RI*“)*\ (R U LU[R]**).

Let {C,: £ <2} be an enumeration of all Borel sets either of second Baire
category or of positive measure. Again an argument similar to that in 2.1’, with
the modification

9eC\Q; v U (B,+1),

n<g
gives the desired result.
3. Base and transitive base. Pawlikowski proved in [7] that
of (&) =cf(®) and cf,(R) =D>.
The following lemma was proved by F. Galvin and independently by J.

Brzuchowski, J. Cichon and B. Weglorz.

LEMMA 3.1. Let 3€1(G), I = — 3 and for every A€ J there exists Be I3 such
that A € B. Then cf(3) > 1. If, in addition, 3 is an ideal, then cf(3)> o.

Proof. Suppose not. Let SeJ be such that for every A€ J there exists
te G for which A = S+t. By assumption, —S € 3J, so there exists ze S such that
—S = S+z Hence

S —-8S-z and S+zc -S.
Therefore —S = S+2z. Let S & Te€ 3. There exists xe G such that T = S+ x, so
SES+x,and hence —S¢ —S—x,1e,S8S+zE S+z—x. Hence S € S—x, so
SES+xES—x+x=2S8.

Therefore, S & S. This contradiction completes the proof.

The assumption 3 = —J is essential. J. Cichon has constructed a o-ideal
on R for which 3 # —3 and cfi(3) = 1.

THEOREM 3.2. If 3€t(R), 3= —3 and 3 is an ideal, then
cf(st) < 2¢fuI)
Proof. Let cf,(3) = ». By Lemma 3.1, we have x > o. Let {4,: £ < x} be
a transitive base of 3 such that 4, = — A, for { <x. Let

B={)(R\AJ+1t): {t;: £ <x)>e*R}.
§<x :
Of course, |#| = (2°)* = 2*. We claim that # < 3*. If not, then there exists
(te: € < x) such that
() (R\A)+1)¢3%,

E<x
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so there is n# < x such that
gﬂ (R\A)+t)+A4,=R.

In particular, t,e(R\A4,)+t,+4,, and hence 0e(R\A4,)+ A4,. This is imposs-
ible, because A4, = —A4,, and if 0 = t+(—t¢), then either {t, —t} = R\4, or
{t, -t} = A,.

We claim that £ is a base of J*. Let Ce 3*. Then for every ¢ < x» there is
te such that Cn(4,+t) =, so C = (R\A,)+t,. Therefore

C< () ((R\A)+t)eR.
$<x

COoROLLARY 3.3. (a) (J. Cichon) cf(€) < 2°.

(b) cf(2%) < 9¢f(2)

Proof. The inequalities follow from Theorem 3.2, Pawlikowski’s theorem
[7] and the Galvin—-Mycielski-Solovay theorem.

Cichont’s original proof of the inequality (a) was different.

Let % A, 6 be infinite cardinal numbers. We say that a sequence
e E< 0> = is a scale if f, < f, for & < { and if for every fe*x there is
¢ <6 such that f < f,. The cardinal 6 is called the length of the scale
{fe: € < ). The following lemma is well known:

LemMa 3.4. If CH holds and 2°* = w,, then there exists a scale on “'w, of
length w,.

Proof. Let “'w, = {g,: « < w,}. Let a < w,. Suppose that we have
a sequence

(e é<a) =™o,
such that, for { <{ <a, f,<f, and g, < f; hold. Let {h,: n < w,} be any
enumeration of {f;: £ <a}u {g,}. Set
Jo(&) = sup{h,(n): n < E}+1.
It is easy to see that f, < f, for £ < a and g, < f,. By the very construction,
{fi: £ <w,} is the desired scale.
A special case of the following theorem was proved by J. Cichon.

THEOREM 3.5. Let x = w be a cardinal and A be a regular cardinal. Assume
that there exists a scale on *x of length i. Let 3eP(x) be such that
add(3) = cf(3) = x and assume that for every A€ 3 there exists BeJ such that
|B\A| = %. Let J€P(x) be such that

£3<cI ad InI=0. )

Then cf(3) = A

Proof. By the assumptions on J it is easy to construct a base (K,: £ < x)
of 3 such that for ¢ <{ we have
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Hence we may suppose that J is in 2(x x %) and that
Koo \K,={a} x%x, K=axx.
Note that for any fe*x we have

{Ca, B>: B< f(@)}e£,().
Let {f:: { <A) be a scale on *x. Suppose that

JeP(), £3cI InI=0,
but cf(J) < A. Let # be a base of J and |®] = cf(J). Let

Ly = {a, B>: B < fy(@)}.

Clearly, L€ J. By regularity of 4 there exist {{,: 7 < A) and Be % such that
L, < B. Of course, {f;,: n < 4) is a scale as well. Moreover, Be J3. There exists
{ag, Be>: & < x} such that

lime,=% and {<a,, B): (<x}nB=0

(since if not, then [a, %) xx = B for any a, so Be3J°, which contradicts the
assumption). Let f €*x be such that f(x,) = B, for { < x and let « < 1 be such
that f < f, . Therefore, for a sufficiently large ¢ < x we have

»Bc =f (ag) < fg.(ag)a

so {a, B> €L, < B, which contradicts {<a,, B,>: { <x} "B =0.
CorOLLARY 3.6 (J. Cichon). If CH holds and 2°* = w,, then

cf(£,,,(2)) = cf(£,,(R)) = cf(€) = w,.

Proof. It is well known that no perfect set belongs to €, hence
€N K =. The corollary follows from 3.4, 3.5, and Sierpinski’s inclusion
£, R cC

The above corollary shows the consistency of the statement cf(€) > 2°.

4. **-closed families. From the equality 3* = 3*** it follows that 3e1(G)
is **-closed iff there is Je1(G) such that J* = 3. Therefore, by the Gal-
vin—Mycielski-Solovay theorem, € is a **-closed o-ideal. It follows that if BC
holds, then [R]<? is **-closed. The difficulties in describing 3* and I** for
particular families are due to the fact that the form of 3* and 3** strongly
depends on set-theoretical assumptions. The following example serves as an
illustration:

EXAMPLE 4.1. Let X€ 8 be a dense Gj-set.

(@) If BC holds, then X € ]**.

(b) If CH holds, then X ¢ {**.

In particular, if BC holds, then R is not **-closed.
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Proof. (a) Note that £ < ([R]<?)*; hence if BC holds, then
L c G* = /**,
Thus (a) is proved.

(b) Let Ae£, (R), |A| = w,. Then AeC. If X eC*, then there is xe R such
that (A+x)Nn X =6, so

A+x = R\XeR.

Hence A€ R, which contradicts Ae£, (R]) and |4] = w,.

We will prove that the ideal of bounded sets is **-closed. Let (G, +, g) be
an abelian metric unbounded group with invariant metric g. Let B(a, r) be an

open ball with centre a and radius r, and let B(a, r) stand for the respective
closed ball. Let

Bd = {X = G: diam(X) < o}.

THEOREM 4.2. (a) Bd* = {X < G: Vnew 3aeG B(a, n)n X = O}.
(b) Bd is **-closed.

Proof. (a) is obvious. In order to prove (b) it suffices to show that
Bd** < Bd. Let AeBd** and suppose that A¢Bd. Then there exists {a,:
n < w} < A such that g(a,+, 0) > 3¢(a,, 0). One may assume that 4 = {a,:
n<w} and a5 =0, a, #0. Let r,= (0, a). We put

X = U(§(09 T3n+ l)\B(Oa r3n))'

Clearly,
G\X = kn)(B(O, 730+3\B(0, r3541)).
We claim that |
B(@3n+25 T3n+1) S B(0, 73,43)\B(0, 73,4 1) € G\X.
If xeB(asp+2, "3n+1) then
e(x,0) < o(x, n+2)+73n+2 <T3n+1+T3042 < 2342 <T3ps3s
so x€B(0, r3,+3). Suppose that xe B(0, r3,+,). Then

Fan+2 < QA3n42, X)+0(x, 0) < 7r3ps1+T3p41 < 3rapsy,

which contradicts rs,4; > 3r3,+,. Hence the claim is proved. Therefore
X e Bd*.
Since A € Bd**, there exists xe G such that A+ x < G\ X. Let ne w satisfy

a0+x = XGB(O, 7'3,,...3)\3(0, Fan+ l)'
Let k be the least natural number such that
a,‘+x¢§(0, T3n+3)-
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From a,+xeG\X it follows that a,+x¢ B(0, r3,+4). By minimality of k we
have a,_,+x€ B(0, r3,+3). Therefore

e(a-1, @) = e(ax-1+x, a,+x)+¢(0, ak—l+x)_9(0; G- 1+X)
200, a,+x)—0(0, ay—1+X) > Tapsa—Tans3 = 2r3p43.

Note that k > 3n+4 (since if not, then g(a,-,, a,) < r -, +7, < 2r3,+3, which
is impossible). But by a,_, € B(0, r3,+3) we have r,_; <r3,+3,50k—1<3n+3,
which contradicts k > 3n+4.

5. Characterization of (£<)*. The proof of our next theorem is closely
connected with the following result used by Carlson in [2]:

If A = R is bounded and infinite, then for every & > 0 there exists X = R
such that A(X)=¢ and A+ X =R.

Let I be the interval [0, 1). Let

Ji={A<=R" VteR" |[An(I"+1t) <k} for k, new.

Let
J'= Lh)Si'-
Clearly, 3" is an ideal.
THEOREM 5.1.
(a) {ASR" IVe>03XcR 4,(X)<SeAX+A=R}=3".
(b) (25°)* = "N Bd*.

For the proof we need the following

LEMMA 5.2. For every ne w and ¢ > 0 there exists ke w such that if A < I"
and |A| =k, then there exists X = R" for which

LX)<e and A,(I"(A+X))<e.
Proof (D. H. Fremlin). Let [x] denote the integer part of a real x. Let
xt(mod )y = xty—[x+yl.
Let
X+(mod 1)Y = {x+(mod 1)y: xeX, yeY}.

It suffices to prove the case n = 1, because the case n > 1 can be proved by an
easy induction. Let n =1, ¢ > 0. Let k be large enough to have

exp(—ke/2) < e.
Since

lim (1 —k/q)*¥* = exp(—ke/2) < &,

q—*
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there exists g,€w such that for every q = q, we have
(1—k/q)*9?) < ¢,
Let A < I, |A| = k. Let q > q, be such that for every distinct a, a’'e A we have
la—a'|>1/q and a+(1-4a)>1/q.
Let I,=[j/q, (j+1)/q) for 0 <j<gq. Let

p=1[eq/2], ie, (1-k/gF <e.

Let v, be the measure on q (identified with {0, 1,..., g—1}) such that, for
D < p, vo(D) = |D|/q. Let v be the product measure v§ on ?q. For z = {z;: i < p)
in ?q let

Fz)=| L,

Then A(F(z)) < p/q < ¢/2. Let "
G(z2) = A+(mod 1)F(z) = I.
We define the Borel set G by
G={(x, 2): xel, ze?q, x¢ G(2)}.
Let xel. By assumption we have |[x—(mod 1)A4| = |4| = k and
[{j: I; ~ (x—(mod 1)A) # B} = k.
Therefore
v({z: (x, 2)€ G}) = v({z: x¢ G(2)})
= v({z: F(z) n(x—(mod 1)4) = B})
=w({z: I,,n(x—(lr;od 1)A) =@ for i < p})
= [1vo({j < q: I;n (x—(mod 1)A4) = B})

i<p

= Gl{j <q: I;n(x—(mod 1)4) = ﬂ}|)p = (q;.k)" = (1 —’f)p <e.

q q
Thus (4 x v)(G) < ¢ and, by Fubini’s theorem, there exists ze?q such that

A({x: (x, 2)€G}) < ¢,
$O
A(I\(A +(mod 1)F(2))) < &.
It is easy to see that X = F(z) u(F(z)—1) satisfies the lemma.
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Proof of the inclusions < in (a) and (b).
(a) Note that Lemma 5.2 is true for r, seZ" with the assumption
A < I"+r and the assertion

LX) <e  A(I"+s\A+X) <e.

Let A¢J" Then for any kew there exist reZ"” and A, < A4, |A,| =k,
A, cI"+r. Let €>0. Let

Z"xw = {{k;, I): icew}.
Let X, satisfy
(X)) <20, A +R)\A +X) < g2
Let
X' =JX.

Clearly, :
,X)<e and R"\(A+X)= U ((I"+k\(4 + X")).

keZn
For a fixed keZ" we claim that

A"+ k\(A+ X)) = 0.

To see this let 6 > 0. By |{i: k; = k}| = w there is an i such that k, = k and
g2t < §, so

A((I" + K\N(A + X)) < A,((I" + kJ\(4,, + X)) < /21 < 6.
By a free choice of é the 'claim is proved, so
A(RNA+X")) =0.
Let age4 and X = X' U((R"\(4+X"))—a,). It is easy to see that
A(X)<e and A+X=R"
(b) By (a) we have
(CUNRe) M
and by Bd € ;7 we have
(25 ®)* < Bd*.
LEMMA 53. Let | .
o ={A< R (Va,d eA)(a+d—e(a,a)=1)}.
If A€, then there exist A, A,,..., Ay €4 such that
A={4;:1<i<2%k}.
In particular, 3" is an ideal generated by .
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Proof. For any meZ" let
An("+m)={al: 1 <i<k(m)}, where k(m)<k.

Let
{a"} for 1< i < k(m), )
= " 1<i<k.
By {0 for k(m) <i< k. for meZ", 1 <i<k
Let
= |J B
meZn
Of course,
k
=|JB, and |BN(I"+m) <1'for meZ"
i=1
Let

22n

[0,2r= I,

1=1
where I, are cubes with the edges of length 4. Let

" meZn

Enumerating 4} we obtain the required partition (because for different m, re Z"
we bave o(I,+2m, I,+2m) > 1).

LEMMA 54. Let X = R", A (X)) < o, 0O<e<l. Thenthereextstss(X s) >0
such that if

ASR\B(0,s(X,s) and Aed,
then |
J((A+X) N B0, }) < e.

Proof. Let s(X, €) be so large that
A(X\B(0, s(X, &)—1)) <.
Let A = {a;: i < w} satisfy the assumptions. Then
A((X +4)~ B, §) < ig;wa,,((x +a) A B, 4)

= iezmlu(an(—ai’ %))
= A4(|UB(—a;, ) n X) < 4,(X\B(O, s(X, e)—1)) <e.
icw

LEMMA 5.5. Let Xe 85 °, kew, 0 < ¢ < 1. Then there exists t(X, ¢, k) > 0
such that if

ASR\B(O,t(X,e,k) and Ae3;,
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then
(X +A)n B0, }) <e.
Proof. Let
t(X, ¢, k) = s(X, g/2%"k).

Let A satisfy the assumptions. By 5.3 there exist 4;e.%/ such that
22nk

A=) A,.
i=1

So, by 54,
22mg

A((X+A4)n B0, }) < 'Zl A, ((X +4,)~ B0, %))

< 22"k228—"k =¢.

Now we are in a position to complete the proof of Theorem 5.1.

(@) (=) Let A€ J" and let k be such that A€ J;. We claim that there is
¢ > 0 such that, for any X < R", if A,(X) < ¢, then X + A # R". By 5.3 there are

A;={d: j<owlesd for 1<i<2¥™k

such that
22nk
A=) 4.
i=1
Let
£ < ﬁ(—‘z’%@), XcR and A(X)<e.
Then |
A((X+4) 0 BO, D) < ¥ 4,(X n B(—aj, 3)
Jjeo
<4,X)<e< %07;—%)—)
Hence

22nk

A(X+A)nBO,Y)) < Y 4(X+4)n B, })
i=1

<2 WBOD) ;g 4.
: 22"k
Thus X+ A4 #R". .
(b) Let Ae "~ Bd* and k be such that A€ J}. Let Xe€ £, ®. Let ae R" be
such that

B(0, t(X, 4,(B(0, 3)), k) (4 +a) = B.
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By 5.5 applied to A+a and ¢ = 4,(B(0, $)) we have

(X + A+a) n B(0, 3) < 4,(B(0, ).
Hence X+ A4 # R". '
COROLLARY 5.6. g(25®) = [R"] <. A
Proof. If Aeg(2;®) = (LS ®)*, then by 5.1 (b) we have A € J". Therefore,
if A is infinite, then 4 is unbounded. But then A,(4+1I") = oo, which con-
tradicts Aeg(8;®).

Note that we have
g([R]«o) = [R]<¢o o [R:Isw = g([R]Sw)’ Bd c £<oo

and
g(Bd) = Bd 2[R]*" = g(£°°),

sO g is not an isotonic operation. -

Some open questions:

(1) Does the equality & ,([R]1<®, £) = £* hold? (P 1367) (F. Galvin asked
whether £, (£) < £*)

(2) Is [R]<® **-closed? (P 1368)

(3) Is it consistent that & (resp. £) is **-closed? (P 1369)

I would like to thank Professor-D. H. Fremlin for the proof of Lemma 5.2,
Professor J. Cichon and Professor B. Weglorz for their valuable suggestions.
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