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1. Introduction. Statement of results. Functions univalent in the unit
disk 4 which admit a quasiconformal (abbreviated: qc) extension to the
extended plane € play an important role in the theory of Teichmiiller spaces;
cf. [4], [9]. Mappings of this kind, ie. q¢c in € and conformal in a
subdomain of €, appear already as a tool in the seminal paper of Bojarski
[5], but the study of such mappings for their own sake was initiated by
Ahlfors and Weill [3] some 20 years ago in connection with Nehari’s
criterion of univalence.

One of the simplest and most natural problems is to find conditions for
a given function f univalent in 4 to have a qc extension to € and possibly to
give an explicit construction of such an extension. To this end we need the
notions of quasicircle and qc reflection due to Ahlfors [2]. Let I" be a Jordan
curve in C. We call I' a quasicircle if it is the image line of a circle under a
gc automorphism of €. For other equivalent definitions and properties of
quasicircles cf. [7]. Let G, G* be complementary domains of a Jordan curve
I in C. We say that ¢ is a gc reflection in I if @ is a sense-reversing qc
mapping of G onto G* whose homeomorphic extension to the closure G
(which necessarily exists) keeps the points on I' fixed. Obviously, ¢ may be
extended to the whole plane as a sense-reversing qc automorphism of C
when defined as ¢~ ! in G*. Thus points we G, ¢(w) = w*e G* are called
quasisymmetric w.r.t. I.

A Jordan curve I' admits a qc reflection ¢ if and only if it is a
quasicircle. For the proof of this statement cf. Lehto—Virtanen book [10]
which is our standard reference, as far as qc mappings are concerned. A
Jordan domain whose boundary is a quasi-circle is called a quasidisk.

We can now state the complete solution of the problem mentioned
above. A necessary and sufficient condition for a function f univalent in 4 (or
in 4* = C\ 4) to have a qc extension to the whole plane is the following: f
has a homeomorphic extension to the closure 4 (or 4*, resp.) and the image
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curve f(04) is a quasicircle. The necessity is trivial. The sufficiency is almost
trivial and is quoted as Lemma 1 in the next section. With another simple
lemma it yields explicit construction of qc extensions for some special
univalent functions. We were able to find explicit qc extensions of functions
convex in one direction, spirallike functions, and also to generalize an earlier
result [8] on qc extension of close-to-convex functions. For more
information about these special univalent functions see [11].

2. Auxiliary results. In this section we shall prove two simple lemmas
which will serve as a tool in obtaining explicit qc extensions in Section 3.

LeEmMMmA 1. Suppose that f maps conformally the unit disk A onto a
quasidisk G with boundary I'. If ¢ is a qc reflection in I and 6: z+>1/Z is the
reflection in T = 0A then

_|f in 4,
(1) F—{(oofoo' in C\ 4

is a gc extension of f to C.

Lemma 1 follows immediately from the fact that F is a homeomorphism
of € onto itself which is conformal in 4 and qc in 4*, the common boundary
T of both domains being a removable set; cf. [10]. Obviously an analogous
lemma holds for conformal mappings of A4*.

LEMMA 2. Suppose the function p: R — R satisfies the Lipschitz condition
on the real axis R:

2. Ip(u))—p(ur)l < Miu, —uy|, uy, useR.
Then the curve I':

3) {u+iv: ueR A v = p(u)}

is a quasicircle and the mapping

4) @: u+iv—u+i[2p(u)—v]

is a gc reflection in T.
Proof. Obviously ¢ may be written in the form

(5) ew)=w+2p((w+w), w=u+iv.

It is easily verified that ¢ is a homeomorphism carrying G = {u+iv:
ueR Av<p(u} onto its complementary domain G* and admitting a
homeomorphic extension on I' that keeps the points on I' fixed. Hence it is
sufficient to show that

w@(w) =y (w) = w—2ip(3(w+W))

is qc in G. For almost all ueR the derivative p’ ‘exists and satisfies
Ip’'(u)} < M. Hence for a corresponding w both formal derivatives of y exist
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and satisfy
V,=—ip'(w), y¢,=1-ip'(u), u=Rew.
The complex dilatation u, = ¢ /Y, satisfies a.e. in ¢
Il = 1P @I {1+p'@)?} "2 < M1+M?})" 12 <1
and this ends the proof.

3. Applications

3.1. We call a domain G strongly convex in the direction e iff

(i) any straight line parallel to the vector ¢ intersects both G and its
complementary set C\G;

(ii) there exists d (0, n/2) such that for any boundary point z, of G the
angle with vertex at z, of measure 23, which is bisected by the ray emanating
from z, and parallel to the vector ¢, is contained in C\G.

Without loss of generality we may assume that § = n/2.

Then the boundary of G is the graph of a function y = p(x), xe R. Take
any x,, x, with x; < x,. From (ii) it follows by taking x, = Rez, that [p(x,)
—p(x))/[x2—x,Jcotd ie. |p(x2)—p(x1)| < |x;—x,]/cotd for p(x;) = p(x,). If
p(x;) < p(x,) take x, =Rez, and now (ii) implies [p(x;)—p(x2)]/[x2
—x;]<cotd and again |p(x;)—p(xy) <|x;—x;|/cotd. Hence p is
lipschitzian and Lemma 2 provides a qc reflection in 9G.

A function f is called strongly convex in the direction ¢ iff it maps 4
conformally onto a domain strongly convex in this direction. A suitable
rotation and then a subsequent application of Lemmas 1, 2 yield an explicit
construction of a qc extension of f to the whole plane €.

3.2. We call a domain G spirallike of type a, a €(— n/2, n/2), iff with any
woeG the whole arc of the logarithmic spiral (—o0, 0] 31 — wyexp(€®1)
together with its end - points 0, w, is contained in G. This implies that with
any w, € C\G the whole arc [0, + c0)31 +—w, exp(€®1) is contained in C\G.

In analogy with 3.1 a domain G is called strongly spirallike of type a, iff

(iii) 0eG and any logarithmic spiral R3t—>woexp(e °7) intersects
both G and C\G;

(iv) there exists 6 >0 such that G is spirallike of type a for any
ae[ag—9, ag+4].

Evidently, the mapping wi—logw carries G into a domain H which is

strongly convex in the direction ¢"® and invariant under the mapping

W+ W+ 2ni. The points in H congruent modulo 2ri correspond to one
point in G. Thus after a suitable rotation a qc reflection in dH can be
constructed as in Lemma 2. The mapping Wi—expW carrying back
congruent pairs of points quasisymmetric w.rt. dH into a pair of points
we G, w*eC\G obviously induces a qc reflection ¢: wr—w* in 0G.
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Now, the mapping function f: 4 — G has a qc extension to the whole
plane described by Lemma 1. Note that the function f(z) = z+a,z>+ ... is
mapping 4 conformally onto a domain G spirallike of type a iff
Re{e “zf'(2)/f (2)} > 0 and ae(—n/2, n/2); cf. [11].

33. A function f holomorphic in 4 is said to be close-to-convex iff
there exists a conformal mapping g of 4 onto a convex domain G such that

(6) [ 2/g () =p(), Rep(z)>0 in 4.

This condition implies univalence of f in 4. In fact, if we put
(7) h(w) = fog™'(w), weG

then obviously

®) H(w)=pog™'(w)=q(w)

is a function of positive real part in the convex domain G and this readily
implies univalence of h. In [8] an explicit qc extension h* of h to € has been
given in case G is a bounded convex domain and the values of g are situated
in a compact subset of the right half - plane. In this case g admits, by means
of a starlike reflection (cf. [1], [6]), a qc extension g* to the whole plane so
that f admits a qc extension f* = h* og*. However, an analogous extension
is possible also if G is an unbounded convex domain which is a quasidisk.
Then G is either a half-plane, or a convex domain whose boundary has two
different asymptotic directions subtending an angle y, 0 <y < m. In either
case G is strongly convex in some direction and hence g admits a qc
extension of the form h*og* because the construction of h* for both
bounded and unbounded convex quasidisks is the same and was presented
in [8]. Therefore we. have

THEOREM. Let f be a close-to-convex function in A such that the
univalent function g in (6) maps A onto a convex quasidisk G and the values of
p in (6) are situated in a compact subset of the right half- plane. Given we C\ G
let © = 1(w) be the unique point on 0G where |w— 1| attains its minimum as 1
ranges over G. Let h* be defined as follows:

h(w), wegG,
h* (w) = {h(t(w))+w—t(w), weC\G,

00, Ww=00.

If g* is a qc extension of g to € then f* = h* 0 g* represents a qc extension of
ftoC

The theorem fails to hold if the convex domain G is not a quasidisk.
Eg. for f(z) =g(z) =4log(1+2)/(1—2), p(z) =1, G is the strip {w: [Imw)|
< 1%4} and obviously f does not admit even a homeomorphic extension
to
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