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0. This paper is devoted to the following problem, the interest of
which is well known in the theory of games and some other fields:

Let C and D be two arbitrary sets, and F(x, y) a real function (1)
on C x D. Under which conditions we can assert that

(0.1) inf sup F(x, y) = sup inf F(z, y)?
zeC yeD yeD zeC

The results we are going to establish will include, as special cases,
almost all of the variants of the minimax theorem known up to the pre-
sent. More specifically, Theorem 1 contains the results of Nikaido [6] and
of Wu Wen-tzun [9]; Theorem 2 contains the results of Sion [7] and of
Wu Wen-tzun [9] and permits a straightforward derivation of a result
of Ky Fan [5]; Theorem 3 provides a generalization of a more recent
result of Golshtein-Movshovich [2].

We would like to draw the attention of the reader to the fact that
all proofs in this paper are elementary and, unlike most of the common
proofs for minimax propositions, make no appeal to theorems like the
separation theorem for convex sets (i.e., the Hahn-Banach theorem),
the Brouwer fixed-point principle and its generalizations to set-valued
mappings, the Helly theorem on intersection of convex sets, and the Sper-
ner lemma and its consequences.

1. Assume that C and D are subsets of two Hausdorff topological
spaces X and Y, respectively. Let a be a real number and let

D(x) = Dy(®) = {yeD: F(z,y) > a} for every weC.
We say that the function F(z, y) is a-connected on C x D if
k
(i) the set () D(a’) is connerted for any finite system a', ..., a*¢ C;
i=1
(1) All the results that follow still hold if F (=, y) is allowed to take on the value

— 00,
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(ii) for any pair a, be C, there exists a continuous mapping «: [0, 1]
— C such that #(0) = a, (1) = b, and, for any 2, u, u,

(1.1) O0<u<i<p' <1=D(u)c i)(u(y))UD(u(,u')).

Clearly, if X and Y are linear spaces, if C and D are convex subsets
of X and Y, respectively, and if the sets {ye D: F(x,y) > a} and {weC:
F(z,y) < a} for every xe C, ye D are convex, then F(x, y) is a-connected.

THEOREM 1. Assume that

(1) the set D is compact;

(2) the function F(x,y) i8 a-connected on C xD for

a = inf sup F(x, y);
zeC yeD
(3) the function F(x, y) i8 continuous separately in x and y.
Then equality (0.1) holds.

We shall first prove the following

LrMMA 1.1. Under assumptions of Theorem 1 every two sets D(a)
and D(b) with a, be C have a common element.

Proof. Since the set D is compact and the function F(x,y) is con-
tinuous in y, we have

a = inf max F(z, y),
xzeC yeD
and so the set D(x) for every xe C is non-empty and closed; moreover,
the a-connectedness of F'(x, y) implies that D(x) is connected.

Suppose now that the sets D(a) and D(b) for some a, be C are disjoint.
Let u: [0,1] - C be the continuous mapping that corresponds to the
pair a, b according to assumption (2). Then the set D(u(l)) for every
Ae[0,1] cannot meet simultaneously D(a) and D(b); for otherwise,
by (1.1), we would have D(u(4)) = E,VE,, where E,= D(u(i))nD(a)
and FE, = D(uw(1))nD(b) are two closed, non-empty, disjoint sets,
contrary to the connectedness of D(u(l)).

Thus, for every Ae¢ [0, 1], one and only one of the following alterna-
tives holds:

(a) D(u(A)) = D(a) or (b) D(u(A) = D(b).

Let M, and M, denote the sets of those ie[0,1] that satisfy (a)
and (b), respectively. Obviously, 0e M,, 1¢ M, and M,VM, = [0, 1].
On the other hand, in view of assumption (3), it is easy to see that the
sets M, and M, are open in [0, 1]. Indeed, consider an arbitrary e [0, 1]
and suppose that 71e M,. It follows that D(u(1)) = D(a), whence
D(u(A)NnD(b) = O, i.e.

(Vye D(b)) F(u(d),y) < a.
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Using the continuity of F(x,y) in x, we can find, for cvery fixed
y ¢ D(b), a neighbourhood V', of (1) such that

(VzeV,) F(z,y) < a.

Since »~'(V,) is a neighbourhood of 7, there exist numbers 1; =
Ai(y)ew Y (V,) (¢ =1,2) such that I, = [4,, 4,] is still & neighbourhood
of 1. We have F(u(4;),y)<a (i =1,2), and hence, by continuity of F(z,y)
in y, we can find, for every ¢ = 1, 2, a neighbourhood W,(y) of y satisfying

(Vy'e Wi(y)) Flu(d),y) < a.

Then W, = W,(y)nW,(y) is a neighbourhood of y such that, for
i=1,2,

(Vy'e W,) Flu(d),y')<a, ie y'¢Du(l)).

Therefore, according to (1.1), y'¢ D(u(A)) for every AeI,. We have
thus shown that to every ye D(b) there correspond a neighbourhood W,
of y and a neighbourhood I, of 7 such that

(Vle Iy) (Vy' € ny) If"(u(l), y') < a.

Since D (b) is a closed subset of the compact set D, it is itself compact,
and so there exists a finite subset @ of D(b) such that the family W, for
ye@ covers D(b). If

lel = {I,: yeQ} and yeD(b),

then ye W,, for some y'¢ @, and hence F (u(2), y) < a. Therefore, D (u (1))
< D(a) for every Ae¢ I, and we have I ¢ M,, which means that 3, is
open in [0, 1]. In a similar way M, is open in [0, 1].

Thus the segment [0,1] is the union of two non-empty, disjoint
subsets M, and M, which are both open in it. Since this is impossible,
we must have D(a)nD(b) # 9.

Proof of Theorem 1. The inequality

inf sup F(x, y) > sup inf F(z, y)
xeC yeD yeD zeC

being trivial, we must only prove the converse inequality, i.e.

ND(x) ~#9.
zeC
Since, moreover, D is compact and every D(x) is closed, it suffices
to show that the sets D(s'), ..., D(4*) have a non-empty intersection for
every finite system #', ..., #¥¢ C. To do this let us proceed by induction.
For k& =2 this follows from Lemmsa 1.1; assume that this holds for
k =h—1, and prove it for k = h. Let D' = D(2"), D'(x) = D' nD(x).
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It follows from Lemma 1.1 that the set D’(x) is non-empty for every ze¢ C.
That is,
(Vive C’) (aye D) F(x,y) = a
and hence
a = inf sup F(x, y),
zeC yeD’
so that assumptions (1)-(3) of Theorem 1 still hold if we replace D by D’'.
Therefore, by the inductive assumption, the sets D’'(2’) for¢ =1,..., h—1
have a non-empty intersection. In other words,

h
ND() #9

which was to be shown.

COROLLARY 1.1. Assume that C and D are convex subsets of two linear
topological spaces X and Y, respectively, and that

(1) D is compact;

(2) for every xe C, ye D, the sets

D(x) ={yeD: F(x,y)=a} and C(y) = {weC: F(z,y)< a},
where
a = inf sup ¥ (z, v),

zeC yeD
are convex;
(3) the function F(x,y) i8 continuous separately in x and y.

Then equality (0.1) holds.

COROLLARY 1.1'. Assume that C and D are conver subsets of two linear
topological spaces X and Y, respectively, and that

(1) C is compact;

2) for every xe C,ye D, the sets

D*(x) = {ye D: F(x,y) >} and C*(y) = {8<C: F(z,9) <p},
where
p = sup infF(z, y),
yeD xeC

are convex;

(3) the function F(x,y) is continuous separately in x and y.

Then equality (0.1) holds.

To prove this proposition it suffices to apply Corollary 1.1 to the
function — F(x, y).

COROLLARY 1.2 (Nikaido [6]). Assume that C and D are convex subsets
of two linear topological spaces X and Y, respectively, and that

(1) either C or D is compact;
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(2) F(x,y) is quasiconver in © and quasiconcave in y;

(3) F(xz,y) is continuous separately in x and y.

Then equality (0.1) holds.

We recall that a function f(x) on a convex set C is said to be quasi-
convesx if for every real y the set {xe C: f(@) < y} is convex or, equivalently,
if for every real y the set {zxe C: f(r) < y} is convex. A function ¢g(y) on
a convex set D is said to be quasiconcave if its negative is quasiconvex.

Corollary 1.2 is proved by combining Corollaries 1.1 and 1.1’. It should
be noticed that this result has been established by Nikaido on the basis
of the Brouwer fixed-point principle (a proof based on the Kakutani fixed-
-point principle can be found in [2]).

The notion of a-connectedness we have defined in Section 1
is closely related to the notion of strong connectedness due to Wu Wen-
-tzun [9]. Let us, namely, set D)(®) = {yeD: F(z,y) >n} for every
real number 7. A function F(x, y) is said to be strongly connected on the set
O xD if

(W,) for any finite system a', ..., a*¢ C and for any real 7, the set
k
(D} (a%) is connected (possibly empty);
i=1

(W,) for any pair a,be C, there exists a continuous mapping u:
[0,1] — C such that %(0) =a, u(1) = b and, for any real » and any
Ay phy 'y

(1.2) 0< <A<y <1 = Dju(d) < Dju(p)uD;(u(p)).

The relationship between this notion and that of a-connectedness
is summarized in the following

LemMA 1.2. If F(x,y) is strongly connected, if D is compact and if

F(z,y) is upper semi-continuous in y, then F(x, y) is a-connected for every
real a.

Proof. First we note that, x being an arbitrary element of C, we have
D = U{D;(x): n<p}, where y =max{F(z,y): yeD}

(the maximum is attained because of the compactness of D and the upper
semi-continuity of F(x, y)). Since every D: () is connected by (W,)
and since the intersection of the family {D;(x): 5 < y} contains the non-
-empty set {ye D: F(z,y) = y}, it follows, by a well-known property of
connected sets, that D is itself connected. Consider now any finite system
a',...,a%c C. Since every function F(a’,y) is upper semi-continuous,
so is f(y) = min F(a’, y). If the set

1<i<k

E = _(kaa(a‘)
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is not connected, then ¥ = E,VE, with E,, K, closed, disjoint and non-
-empty. Since every compact space is normal, there exist two disjoint
open sets G, G, such that G; o E; (i = 1, 2), and since the set D\(G,U@d,)
is non-empty (because of the connectedness of D) and compact (as
a closed subset of the compact set D), the function f(y) attains a maximum
non D\(G,UG,). By the definition of K, we have f(y) < a for every y¢ E,
so that 5 < a, and hence

k
E,c E* =ND*4") (i=1,2).
i=1

Therefore, E*NG; > E; # @ (¢ = 1,2), and since E* « G,U@,, this
means that E* is not connected, contrary to condition (W,). Thus, under
the assumption stated in Lemma 1.2, condition (i) in the definition of
a-connectedness is satisfied. On the other hand, if a, be C and if » is the
mapping associated with them by (W,), then we must have (1.1). Indeed,
if F(u(u),y)<a and F(u(u'),y)< a for some ye D, then there exists
n < a such that F(u(u),y)<n and F(u(u'),y) <7 and, therefore, by
(1.2) we can write F(u(4),y) <7< a for any Ae [u, u']. In other words,
if y¢ D(u(u))UD(u(u')), then y¢ D(u(i)), as required by (1.1).

From Lemma 1.2 and Theorem 1 we deduce

COROLLARY 1.3 (Wu Wen-tzun). Assume that

(1) the set D is compact;

(2) the function F(x,y) is sirongly connected;

(3) the function F(x,y) is continuous separately in x and y.
Then equality (0.1) holds.

Actually, in [9] Wu Wen-tzun assumed also that the space Y is
separable (and made use of this assumption in his proof which relies on the
1-dimensional form of the Helly theorem). As follows from the foregoing,
this separability assumption may be dropped. Moreover, as will be seen
shortly, assumption (3) in Corollaries 1.2 and 1.3 can be replaced by
a weaker one.

2. We now try to relax the continuity condition (3) in Theorem 1.
The price we must pay, however, is some strengthening of the connectedness
condition (2). ' .‘

We say that a function F(x, y) is a-strongly connected on C x D if there
exists a sequence &|0 (s =1,2,...) such that, for every s, the function
F(w,y)+e, is a-connected on C xD.

THEOREM 2. Assume that

(1) the set D is compact;

(2) the function F(xz,y) is a-strongly conmected on C XD for
a = inf sup ¥ (x, y);

xeC yeD
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(3) the function F(x, y) i3 lower semi-continuous in x and upper semi-
-continuous in y.
Then equality (0.1) holds.

For every xe C and every s we set
D¥(x) = Dy_(®) = {ye D: F(z,y) > a—e,}.

LemMA 2.1. Under assumptions (1) and (3) of Theorem 2, if F(x, y)
is (a — &,)-connected on C < D, then every two sets D*(a) and D*(b) with a, be C
have a common element.

Proof. Assume that D’(a)nD*(b) =@ for some a,beC. By the
same argument as that used in the proof of Lemma 1.1, but replacing
F(z,y) by F(x,y)+ e, we can see that if w: [0,1] — C is the mapping
that corresponds to the pair a, b for ¥(x, y) + ¢,, then, for every ie [0, 1],
one and only one of ‘the following alternatives holds:

(a) D*(u(4)) = D*(a) or (b) D*(u(2)) = D*(b).

Let M, and M, denote the sets of those Ai¢[0,1] that satisfy (a)
and (b), respectively. Obviously, 0e M,, 1e M, and M, UM, = [0, 1].
Furthermore, if ue M, and u'e¢ M,, then [u, '] =« M,, since

D*(u(A) = D®(u(u))uD*(u(pu')) for every Ae[u, p'].

Let 1 = sup M, = inf M, and suppose, for example, that Ae M,
(the case ¢ M, can be treated similarly). Then D?(u(1)) = D*(a), i.e.

(2.1) (Vy ¢ D*(a)) F(u(d), y)+e< a.

If {4,,} denotes a sequence in M, which converges to 4, then, for every
m, we have D°(u(d,)) = D*(b), so that

(Vye D%(a)) F(u(Ay), y)+e,< a.

By letting m — oo and using the lower semi-continuity of F(«, y)
in x, we then conclude

(2.2) (Vye D*(a)) F(u(d),y)+e < a,
which together with (2.1) implies

supF (u(2), y) < a—e, < a,
yeD

contrary to the definition of a. Thus the hypothesis D°(a)n D?°(b) = O
is untenable and the proof of Lemma 2.1 is complete.

Proof of Theorem 2. We first observe that if ae C, then, setting
D' = D*(@@), by Lemma 2.1 we have D*(a)nD*(x) # @ for every zeC
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and every s’ > s. Hence, since D* (@) = D*(a), we have D*(@)ND* (x) +~ .
Therefore,

(V.’L‘e C) (ayeD’) F(z,y) > a—ey,
which means that
inf sup ¥ (2, y) = a.
xeC yeD’
From this remark and Lemma 2.1 it follows, by an argument anal-
ogous to that used in the proof of Theorem 1, that

D’(xz) #9  for every s.
xeC
Let y° be an element belonging to all D°(z), xe C, and let y° be a cluster
point of the sequence {y°}. Since

(Vs) F(»,y°) > a—e, for every fixed zeC,

it follows from the upper semi-continuity of the function ¥ (x, y) in y that
F(x,y°) = a. Therefore,

infF(z, y°) > a,

zeC
and hence

sup inf F (z, y) > a,
veD zeC

which was to be proved.

COROLLARY 2.1. Assume that C and D are convex subsets of two linear
topological spaces X and Y, respectively, and that

(1) D is compact;

(2) there exists a sequence &,|0 such that, for every s and every xe C,
ye D, the sets

Di(w) ={ye D: F(z,y)=>a—¢e} and C(y)={xeC: F(x,y)<<a—c¢},
where
a = inf sup F(z, v),
xeC yelD

are conver;

(3) the function F(xz, y) is lower semi-continuous in x and upper semi-
-continuous in y.

Then equality (0.1) holds.

We might formulate Corollary 2.1’ which would be corresponding
to Corollary 2.1 just in the same way as Corollary 1.1’ corresponds to
Corollary 1.1. By combining Corollaries 2.1 and 2.1’ we obtain

CoROLLARY 2.2 (Sion [7]). Assume that C and D are convex subsets
of two linear topological spaces X and Y, respectively, and that
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(1) either C or D is compact;

(2) F(x,y) 18 quasiconver in x and quasiconcave in y;

(3) F(=x,y) is lower semi-continuous in x and upper semi-continuous
m Y.

Then equality (0.1) holds.

This proposition has been proved in [7] on the basis of the Kurato-
wski-Knaster-Mazurkiewicz theorem, and in [1] on the basis of the sepa-
ration theorem.

From Lemma 1.2 and Theorem 2 it also follows that in Corollary 1.3
(theorem of Wu Wen-tzun) condition (3) on the continuity of F(z, y)
can be replaced by a weaker one, namely: F (x, y) is lower semi-continuous
in 2 and upper semi-continuous in y.

Thus Theorem 2 contains, as special cases, both the result of Sion
(which, in turn, includes the results of Nikaido, Nash and Kneser) and
that of Wu Wen-tzun. Furthermore, it can be used to deduce easily the
following result of Ky Fan [5]:

A function F(z, y) defined on C xD is said to be pseudoconvexr in x
if, for every pair ', 2#*¢ C and every real A¢ [0, 1], there exists an ze C
such that

(Vye D) F(z,y) < AF(2', y) +(L— 1) F (o, y).

This function is said to be pseudoconcave in y if — F(x, y) is pseudo-
convex in y.

CorOLLARY 2.3 (Ky Fan [5]). Assume that

(1) the set D is compact;

(2) the function F(x,y) is pseudoconvex in x and pseudoconcave in y;

(3) the function F(m,y) is upper semi-continuous in y.

Then equality (0.1) holds.

Proof. First we note the following property of pseudoconvex-concave
functions which is an easy consequence of the minimax theorem:

) If, for some &', ..., 2% C, the system F(x',y)>=>0 (i =1,...,k)
has mo solution in D, then there exists an e C such that F(Z, y) < 0 for all
ye D.

Indeed, let us consider the set

={z =(21,...,%)e R": (JyeD) F(«',y)+2>0,i=1,..., k.

Since no ye D exists such that F(a*,y) >0 (i =1, ..., k), we have
0¢ E, i.e. (Vze E) (i) 2z, > 0. Therefore, if S* denotes the simplex

{te B*: ;> 0, D'y, =1},
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then (Vze E) (3te 8%) <t,2) > 0, which means that

inf sup{t,2) >0
2eE teSK
But, as can be easily verified, the pseudoconcavity of F(x,y) in y
1mplies the convexity of the set E, so that all conditions of Theorem 2 are
satisfied for the function (z,t) defined on E x S*. Consequently,

sup inf(t, 2) > 0, ie. (Jie 8 (Vze E) &,2) >0

teSk zeE
and, taking for every y ¢ D the vector z with 2, = — F(a*,y) (i =1, ..., k),
we have

k
ZfiF(a}i, y) <0 for all ye D.
s

Since, on the other hand, F(z, y) is pseudoconvex in z, there exists
an Ze C such that

k
(Vye D) F@E y) < D UF (@', 9) <0

proving ().
Turning to the proof of Corollary 2.3, let us take an arbitrary sequence
&, 0. For every s and every finite system z', ..., 2%¢ C, the sets D*(a),
., D*(2*) must have a non-empty intersection, since otherwise, in view
of (*), there would exist an Ze C such that

(Vye D) F(Z,y)<a—¢e < a,

contrary to the definition of ¢ in Theorem 1. Thus the family D?(x),
xe C, has the finite intersection property. Since D is compact and since
every set D*(=) is closed (because of assumption (3)), this family has a non-
-empty intersection. That is, for each s there exists an element y°¢'(M D*(%).
If y° denotes a cluster point of the sequence {y°}, then e

(Vze Q) F(o, y°) > a—e&,,
and hence, by the upper semi-continuity of F(«, y) in 4, F(x, y°) > a, i.e.

sup inf ¥ (», y) > a,

xeC yeD
which completes the proof.
3. We conclude the paper by a minimax theorem for the case where

X is & locally compact space. In this case, assumption (1) of Theorems 1
and 2 can be somewhat weakened — which may be of interest, since
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in some applications the requirement that .D (or C') be compact turned out
to be too stringent.

Let fgz(xr) = sup{F(x,y): ye E} for each subset E of D.

THEOREM 3. Assume that

(1) the space X is locally compact, the set C is closed and the set

C* = {we O: fp(w) = int fp(e)}
x’'eC
18 non-emply and compact;

(2) for every finite subsel Q of D, there ewists a compact set E
such that Q <« Ec D and F(x,y) i8 a'-connected on CXxE for all
ade(a—e, ate), where a = inf supF(x, y) and ¢ is some positive number
independent of Q; zeC yeD

(3) the function F(xz,y) is lower semi-continuous in x and upper semi-
-continuous in Y.

Then equality (0.1) holds.

For the proof of this theorem we need

LEMMA 3.1. Let F(xz,y) be lower semi-continuous in xe C and let P
be a compact subset of C. If

supF(x,y) >y for all xeP,
yeD

then there ewists a finite subset Q of D such that

) supF(z,y) >y for all xeP.
~ yeQ
Proof. By hypothesis for every v« P we have F(x, y,) > y for some
Yy€ D. Since F(x', y,) is lower semi-continuous in z', there exists a neigh-
bourhood V(z) of # such that

(Va'e V(@) Fla',y,) > 7.

Since P is compact, there exists a finite set P, « P such that the
family V (z), #¢ P,, covers P. Let us take @ = {y,, e P,}. Then, for every
xe P, since ze V(z') for some »'e P,, we have F(z, y,) >y, and hence

* supF(xz, y) >y.
yeQ

Proof of Theorem 3. Since C is a closed subset of X, we may,
without loss of generality, assume that C = X. From the definition of
a and C* it follows that

(Ve C*) fp(m) = a and (Vz¢C) fp(x) >a.

Since the space X is locally compact, there is a compact neighbour-
hood K of C*. Let y be an arbitrary number satisfying ¢ —e¢ < y < a.
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We have (Vwe K) fp(x) >y, and so, by Lemma 3.1, there is a finite
subset @, of D such that (V:ve K) fo,(#) > . Let us take an open neigh-
bourhood @ of C* contained in K a,nd a compact nelghbourhood K’ of K.
Then ¢’ = K'\@ is also compact and (Ve C’) fp(®) > a, so that, agaln
by Lemma 3.1, there is a finite subset @, of D such that (Vze ') fo,(®) > a.
Let E be a compact subset of D which corresponds to@ = @,U @, according
to assumption (2). Obviously,

(5.1) | (Voe K) fg(2) > fo, (%) > 7,
(5.2) (Voe C') fa(z) > fo,(®) > a,
(5.3) (Vze C*) fgz(2) < fpl2) = a.

On the other hand, it is easy to see that
(5.4) (Vo¢K') fz(@) > a.

Indeed, let Z¢K'. Since fz(x) is lower semi-continuous, it attains
2 minimum % on the compact set C'. Let #* be an arbitrary element of
C*, and %' a number such that a < 5’ < 7 (see (5.2)). Let u: [0,1] = C
be the mapping which is associated with the pair %, #*, according to the
n’-connectedness of F(x, y). Since 4~ (@) and »~'(X\K’') are open, their
union cannot be equal to [0, 1]. Consequently, there exists a Ae [0, 1]
such that ' = u(4)e K'\G = (C'. We have F(z',y) > n' for some ye E;
therefore, by a property of u (see (1.1)), either F(z*,y) > %' or F(%, y)
> 7’. But, according to (5.3), we obtain F(s*,y) < a< 7', and so we
must have F(z, y) = 5’ > a, which proves (5.4\).
From (5.1), (5.2) and (5.4) we then deduce
(Ve C) fg(z) >y, ie y<infsupF(z,y)<a
zeC yeE
Now, F(x,y) being a’'-connected on C X E for every a'e(y, a) and
E being compact, Theorem 2 applies and yields
inf sup F (z, y) = sup infF(z, y).
zeC yeE yeE zeC
Therefore,

sup inf P(3, y) > y .
yeE zxeC
and, a fortiori, '
supinf F(z, y) = y,
yeD zeC
which implies
sup inf F(z, y) = a,

yeD xeC

since y can be taken arbitrarily close to a. The proof is complete.

COROLLARY 3.1. Let C and D be convew closed subsets of two linear
topological spaces X and Y, respectively. Assume that.



GENERAL MINIMAX THEOREM 157

(1) X is finite-dimensional and

C* = (@< C: fp(®) = inf fp(a)}
x'eC

18 & non-emply compact Set,

(2) F(x,y) is quasiconvexs in & and quasiconcave in y;

(3) F(xz,y) is lower semi-continuous in x and upper semi-continuous
n .
Then equality (0.1) holds.
This follows from the fact -that, for any given finite subset ¢ of D,
the convex hull of @, obviously, yields the compact set E required in
assumption (2) of Theorem 3.

Corollary 3.1 contains, as a special case, a result established in [2].
The previous method of the proof is a generalization and a simplification
of a method used in [2] for the case X = R™ and Y = R".

Addendum. After this paper had been written, we remarked that
certain results in the first part could be improved. Some of these im-
provements have been presented in [10] which is, essentially, a shortened
version of the first part of this paper. A major improvement consists
in noting that Theorem 1 holds even if the function ¥ (x, y) is only upper
semi-continuous in each variable (this can be easily seen from the proof
given above). Furthermore, Theorems 1 and 2 of the present paper, as
well as results in [10], remain in force if the a-connectedness condition
in each of them is replaced by the following weaker one (which does not
imply the connectedness of the sets D,(x) as in part (i) of the definition
of the a-connectedness).

Let

D, (@', ..., o) = {yeD: F(&*,y)=n, i =1, ..., k}
(in game-theoretical terminology this is the set of all strategies which
guarantee to the second player a pay-off not less than # if the first
player chooses one of the strategies ', ..., z*). Then there exists a non-de-
creasing sequence

N, > a = inf sup F(x, y)

xeC yeD

such that to every n, every pair a, be C, every finite system a', ..., 2*¢C
satisfying D;n(a,)nD;ﬂ(b) = @ — where D’(x) stands for D(a, ..., 2%, )
and the bar denotes the topological closure operation — there corresponds
a continuous mapping %: [0,1] - C verifying #(0) = a, u(1) = b such
that, for every interval [{,,?,] < [0,1] and every te[t,,?,], we have
either D, (u(t)) = D (u(t)) or D, (u(?)) = D, (u(t,)).




158 HOANG TUY

REFERENCES

[1] C. Berge, Topological spaces, Edinburgh 1963.

[2] E.T.TonpmreitH, Teopus dgolicmeeHHoCMU 8 MAMEMAMUYECKOM NPOEPAMMUDPOEA-
Huu u ee npuaoxcenusn, MockBa 1971.

[3] 8. Karlin, Mathematical methods and theory in games, programming and economics,
London-Paris 19569.

[4] H. Kneser, Sur un théoréme fondamental de la théorie des jeux, Comptes Rendus
Hebdomadaires des Séances de I’Académie des Sciences, Paris, 234 (1952),
P. 2418-2420.

[6] Ky Fan, Minimax theorems, Proceedings of the National Academy of Sciences
of the U.S.A. 39 (1953), p. 42-47.

[6] H. Nikaido, On von Neumann’s minimax theorem, Pacific Journal of Mathe-
matics 4 (1954), p. 65-72.

{71 M. Sion, On general minimax theorems, ibidem 8 (1958), p. 171-176.

[8] J. von Neumann, Zur Theorie der Gesellschaftsspiele, Mathematische Annalen
100 (1928), p. 295-320.

[9] Wu Wen-tzun, 4 remark on the fundamental theorem in the theory of games,
Science Record 3 (1959), p. 229-233. ’

110] X. Tyu, O6 odnoii obweli murumakcroii meopeme, JIOKIANH AKajgeMHH HAYH
CCCP 219 (1974), p. 818-821.

INSTITUTE OF MATHEMATICS
HANOI

Regu par la Rédaction le 8. 2. 1974



