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1. Let (2,%; P) be a complete probability space and let (#,).r +
be an increasing family of o-fields of events, satisfying the usual condi-
tions, i.e. #, contains all P-negligible sets and

F, =%, for each t>0.

8>t
In what follows, martingales, local martingales, submartingales,

and stopping times will be considered with respect to this family only.
All processes considered are assumed to be a.s. right continuous, with
finite limits from the left (“cadlag”).

The needed definitions can be found, for example, in [5].

Let M = (M,),.n . be a local martingale (M, = 0) such that

(1.1) E((AMT)2Z{T<00}) < o

for every stopping time 7, where 4AM, = M,— M, , and yx, denotes the
indicator function of the set A. If (8,),.,... is a sequence of stopping
times reducing M, 8, + oo, then the stopping times

T, = 8,Ainf{t: | M| >}

have the property that (M, AT, )ieR , are square-integrable martingales for
n =1,2,... In other words, (1.1) implies that M is locally square-inte-
grable. Let (M) = ({M>)r , denote the unique (up to indistinguish-
ability) predictable, increasing process such that

(1.2) M:— (M) is a local martingale, (M), = 0.
Another important increasing process associated with M is defined by
(1.3) [M], = M+ D) (AM,),

s<t

where M° is the continuous part of M (cf. [5], for the sake of brevity we
write (M) and [M] instead of <M, M) and [M, M], respectively). In
the present paper some asymptotic properties of M are established in
terms of the processes (M) and [M].
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PROPOSITION 1. Under assumption (1.1)

(1.4) {lim M, exists and i8 finite}

t—+4o00
= {(M)e < 0} = {[M],, < oo} a.s.
Moreover,

(1.5) lim sup M; = + o0 = —lim inf M, a.s.

t—>+400 t—><400

on {{M)e, = +o00} (= {[M]e = +0}).

We shall need the following simple lemma:

LEMMA 1. Let M be a local martingale, M, = 0. If there exisis a se-
quence (T,),_, , ... of stopping times reducing M, T, » oo, guch that

(1.6) supE(M3 ) < oo,

then lim M, exists a.s. and is integrable.

t—+o00

Proof. Let U%(n) denote the number of upcrossings of the interval

[a, b] by the stopped martingale (M,,r, )er , (cf., e.g., [4]). We have the

“upcrossing inequality”
1

b—a

1
E(Ua(n) < (S‘:-PE(M?}\T,,)'F“—) = m(E(M$”)+“—)-
Next, if U, denotes the number of upcrossings of [a, b] by (M,).r
then U2(n)~ U, and we get

B(UY) < ;= (supB(M,) +a").

The proof is now completed by the standard argument.

Remarks. (a) If (1.6) is satisfied for one sequence (T,),_,,... of
stopping times such that T, reduces M and T, » oo, then it is satisfied for
every such sequence.

(b) If instead of (1.6) we assume that

SupE(| M, |”) < oo for some p > 1,

then, by an immediate extension of Doob’s LP-inequality, M is an
(LP-bounded) martingale.

Proof of Proposition 1. The proof is rather typical (cf. [6],
chapitre VII), so we omit details. Let (T,),.,.... be a sequence of stop-
ping times such that T, oo, and (M,,7, )r, are square-integrable
martingales for » =1, 2, ... Considering the Doob-Meyer decompositions
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of the submartingales ((M,r )’)er,, We obtain a unique increasing,
predictable process 4 = (A,),ER+, A, = 0, such that
1.7) (Mg, ) — A, arJer, i8 @ uniformly integrable martingale
forn =1,2,...
Now, to prove the first equality of (1.4) and (1.5) it is enough to show
that

(1.8) lim M, exists and is finite a.s. on {4, < oo},
t—++o00

(1.9) sup M; = + o0 a.8. on {4, = + oo}
i

To prove (1.8), let S = inf{t: A,> a}, where a is any fixed positive
number. It suffices to prove that lim M,, ; exists a.s. and is finite. This
will be shown if we prove that >+®

(1.10) supE (M7 ,s)’) < oo,
n

and then apply Lemma 1 to the local martingale (M,, sher, - Now, 8 is
a predictable stopping time, since it is the debut of a predictable set with
sections “closed from the right” (cf., e.g., [1]); hence there exists a se-
quence (8,)y-1s,... of stopping times such that 8, 7 8,8, <8 for
m =1,2,... Now, (1.7), the optional sampling theorem and the defini-
tion of § imply
E((M7 ,s,)) = E(4g ar,)<a forn,m=1,2,...,

whence

a> lim E((M;,,Asm)z) > E ((Mg—)zl{s,grn}) +E ((M;”)ZX(S>T,,}) .

m—>+00
This, combined with the obvious inequality
1
(ME V>~ (M;q*)’—(AMs)’,
gives 1
a = ) ((MT AS)z) —E ((AMS) Xs<r, S<oo})

and, finally,
sup E ((M;n/\s)z) < 2a+2E ((AMs) xi5c0n)-
n

Thus, (1.10) is proved hy using assumption (1.1).

To prove (1.9) we fix again an arbitrary positive number a and put
R =inf{t: M, > a}. It suffices to show that Ap < oo a.s., and this
follows from the inequality

MT,,AR = My o XiTa<B} T MRX(T,,;R}
< oxr,<mt+ AMelr, >R R<) T Mp- X1, >m < G+ | A MglxR<o0)
and from the fact that
E( MT AR 2) = A:r ar) /" E(Apg).
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Of course, assumption (1.1) is used here once more.

Finally, to prove the second equality of (1.4) we use the fact that
((Mpnr, — {MDipr,)ier, I8 a uniformly integrable martingale for n =
1,2,... (cf. [B]) and that A[M],= (4M,):. We argue analogously as in the
first part of the proof. Details are omitted and the proof is completed.

Remarks. (a) It follows from the proof that if M is a locally square-

integrable local martingale, then [M] < oo and lim M, exists and
t—++0
is finite a.s. on {{M)>, < oo}, whenever we require (1.1) to be satisfied

for predictable stopping times only. For example, if the family (.?"),en+
is quasi-left continuous, then 4 M, = 0 a.s. for each predictable stopping
time (see [1], chap. V) and (1.1), in this modified form, is anutomatically
satisfied.

(b) Assumption (1.1) is, of course, satisfied if the jumps of M are
bounded. It is so, for example, for the local martingale associated with
a point process (cf. [3]).

(c) The same theorem (without the statement concerning [M])
with the same proof holds if (1.1) is replaced by E(|4M7|”yircoy) < 00,
and (M) by the increasing predictable process A® such that |M|? — A®
is a local martingale, where p is an arbitrary number not less than 1.
In particular, considering p = 1, we get the following

COROLLARY. If M 48 a local martingale (M, = 0) such that
E(|AMTIZ{T<00}) <

for every stopping time T, then, for P-almost all o, either lim M,(w) exists
and is finite or I+

limsup M,(w) = + o0 = — liminf M,(w).

{—+400 t—+00

2. Let M be a locally square-integrable local martingale, M, = 0.

We know that, under some assumptions, (M,),ER+ converges a.8. on the
set {(M), < oo} and diverges a.s. on {{(M), = +oo}. In this section
we show that in the most important cases the divergence cannot be too
rapid. Namely, we have the following “continuous time version of the
strong law of large numbers” (cf. [6], chapitre VII):

PROPOSITION 2. Assume that the process (M) i3 continuous. Let
f: R_— R, be any increasing continuous function such that

. 1
+
and
(2.2) lim f(a:——l-a) =1 for each a > 0.

2>t f(@)
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Then
. M,
lim ———
t—-+00 f(<M>t)

This proposition should hold also without assumption (2.2) (f may,
clearly, increase more rapidly!) but discussion of this condition does not
seem to be interesting. For the “important” functions

(2.3) =0 a.8. ontheset {{M), 6 = + oo}.

fl@) =a° and f(z) = l@(logf’w)" (a> %)

condition (2.2) is satisfied.
The proof will be based on two lemmas.

LeEMMA 2. Let (X,, 9y)pao,,.. be a discrele time martingale such that
E(XZ)< oo for m =1,2,... and let

(Xon = D B(Xp— X)) 19,n))  Jor n>0,(XDe=0.
k=1

Then

(2.4) ( X, n }mﬂ g )
. fz(a‘+<X>n) a+<X)n fz(u) ’ " n=0,1,...

18 a supermartingale for every fumction f which satisfies the assumptions
of Proposition 2 and for each a > 0 such that f(a) > 0.

This lemma is known, and it can easily be proved by straightforward
calculations, using the fact that X*—(X) is a martingale and (X), is
measurable with respect to ¢,,_,.

LEMMA 3. If N = (N,),r 8 a square-integrable martingale (N, = 0)
such that the process (N> is continuous, and f is as above, then

T2 +o0

N du 1 du
P(S‘?p(f*<a+<N>,>+ I m)>")<? f ()

a+<{N

for every r > 0, and a such that f(a) > 0.

(Notice that the process under the sup may not, in general, be a
supermartingale.)

Proof. By the right continuity of N, (¥N) and f, it suffices to prove
that
’ N ~ 1 ™ du
2.5) P(max ke " ! f ——) > r) < —f kel
(2:9) (o<k<m (fz(a HLND,, ) v f*(w), rJ o fi(u)

a+(N)k2-n a

for n,m =1, 2,...
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Fix n, m, and set

() — —
X)) =Ny iy 9 =F puiny

i
(2.6) (X = D' B((XP — X)) 19),
=1
where » is an arbitrary integer. Now, (X, 9{),_,,,,... is a martingale
and we may apply Lemma 2. We write “the maximal inequality” for the
(non-negative) supermartingale (2.4):

P mas e, > < [
o<j<m2” f (a+<X(v)>J a+<x(y)> fz( ) f(u).
Hence
N, du 1 F° du
2.7) P k2 ___) )<_\ _du_
&0 (oﬂiﬁ(f(a+<x"’>m.) wrcion 00 Fi(w)

It is known [2] that
lim (X®, , = (Ndu-n in I,
>+ 00
since the process (N) is continuous. Therefore, there exists a subsequence
(»;) such that

<X('i)>m"_ - (N> as ¢ > +oo

k2~ "
a.s. for k =0,1, ..., m. Inequality (2.5) is now obtained from (2.7) by
passing to the limit.

Proof of Proposition 2. Let (T,),.,.... be a sequence of stop-
ping times (T, 7 co) such that (M,,r )wr N is a square-integrable martin-
galeforn =1, 2, ... From Lemma 3, apphed to the martingale (M, ,r, )er, »
we derive 1mmed1a.tely that

| M\, l/'r) * du
Jla+ <MD pr,) f*(w)

for n =1,2,..., r> 0, and for % such that f(u)> 0. Hence, letting
n —> oo we get

P (sup

| = du
P -  r
(s“pf<a+<M>,) >V ) f 0)
Let (a,),_,,.,... be a sequence such that
> [

=1 a,
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By the Borel-Cantelli lemma we have

| M|
fup ———+— < Vr for n large a.s.
& T+ <My S

Now, fix w for which this inequality is satisfied, and such that (M) _(w)

= 4 o0. For n = n(w), sufficiently large but fixed, it follows that

| My (w)] <Vr fla, + <MD (w))
TR <V
F({M () F(<MDy(w))

for t>0.

Finally, using assumption (2.2) (this is the only place where we make

use of it), and letting » — 0 over a countable set, we obtain (2.3).

Added in proof. Similar topics are considered in the paper by

D. Lepingle, Sur le comportement asymptotique des martingales locales,
Séminaire de Probabilités X1I, Lecture Notes in Mathematics 649 (1978),
p. 148-161. It has turned out that some of our assumptions can be

weakened.
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