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1. Introduction. In [9], Granirer defined the subspace of uniformly
continuous functionals on the Fourier algebra A(G) of a locally compact
group G, denoted by UC(G), to be the norm closure of A4(G): VN(G), where
VN(G) is the von Neumann algebra generated by the left translation
operators on L, (G). In this case, UC(G) is always a C* -algebra (see [10, p.
65]). Also UC(G) is precisely the space of bounded uniformly continuous
complex-valued function on G (the dual group of G) when G is abelian.

By an F -algebra we shall mean a pair (4, M) such that 4 1s a complex
Banach algebra and M is a von Neumann algebra such that 4 = M, the
predual of M, and the identity of M is a multiplicative linear functional on A.
If there is no confusion, we shall simply say that A is an F-algebra and we
shall identify A* with M. The class of F-algebras was introduced and studied
by the author in [15]. It includes the algebra L,(G) and A(G) of a locally
compact group G. It also includes the Fourier—Stieltjes algebra B(G) of G, the
measure algebra of a locally' compact semigroup or hypergroups [5], the
class of convolution measure algebras studied by Taylor [22] and the class of
L-algebras (for which the identity of the dual algebra is in the spectrum of
the L-algebra) considered by McKilligan and White [19].

In this paper, we define and study the spaces UC,(A) and UC,(A4) of
right and left uniformly continuous functionals on F -algebras. We prove
(Corollary 4.5) among other things that if 4 is an F-algebra with a right
approximate identity bounded by one and X is an ultra - weakly dense C*-
subalgebra of A* which is topologically invariant topologically left
introverted contained in UC,(4), then the algebra of bounded right
multipliers of A is isometric and anti-isomorphic to the largest closed
subalgebra of X* (with the Arens product) containing A as a right ideal. We
also prove (Theorem 5.1) that if A is an F -algebra with a right approximate
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identity bounded by one, then UC,(A)* is isometric and algebra isomorphic
to the algebra of bounded operators from A* into A* commuting with the
action of A.

2. Preliminaries and some notations. Let E be a linear space, and ¢ be
a linear functional on E; then the value of ¢ at an element x in E will be
written as ¢ (x) or {¢, x). If F is a subspace of the algebraic dual of E, then
o (E, F) will denote the weakest locally convex topology on E such that each
of the functionals in F is continuous.

If K is a subset of a normed linear space E, then (K> will denote the
linear span of K. Also the closure of K and the closed linear span of K will
be denoted by K and (K)~ respectively when the closure is taken with
respect to the norm topology, or by K* and {K)~* when the closure is taken
with respect to a topology 7 on E different from the norm topology. The
continuous dual of E will be denoted by E*.

If M is a von Neumann algebra, then M, will denote its unique predual.
The topology o (M, M,) on M will be referred to as the ultraweak, or simply
the o -topology. A linear functional m in M* is called a state if |m|| = m(e)
= 1, where e is the identity in M. The following lemma is probably in the
folklore. However we are unable to find a reference to it.

LemMMA 2.1. Let M be a von Neumann algebra. Then the set of states in
M, is weak* -dense in the set of states in M*.

Proof. Let m be a state in M*. By Goldstine’s theorem [4, p. 424],
there exists a net y,eM,, ||y ]l <1, such that y, converges to m in the
weak* - topology. Since |y, (e)] = m(e) = 1, it follows that ||y,|| — ||m]||. Let ¢,
= |¢,| absolute value of ¥, in M. It follows from [7, Lemma 3.3] that ¢, is
also the restriction of the absolute value of ¥, in M* to M. Hence by [7,
Lemma 3.5], ¢, converges to m in the weak* -topology of M*. Consequently
¢./¢.(e) are states in M, converging to m in the weak* -topology.

If A is a Banach algebra, then for each ¢e A, and xe A*, define the
elements ¢-x and x ¢ in A* by

X, y>=<x, 97> and <($-x,7)>=Lx,y¢)
for each ye A. We say that a subspace X of A* is topologically left (resp.
right) invariant if X-¢ =X (resp. ¢-X = X) for each ¢peAd; X is
topologically invariant if it is both left and right topologically invariant.
If X is a topologically left invariant subspace of A* and me X*, we
define an operator m; from X into A* by

{my(x), p> = {(x-¢, m> for each peA.

We say that X is topologically left introverted if m (X) < X for each m in X*.
Similarly, we can define topologically right introverted subspaces of A*.
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A subspace X of A* is topologically introverted if it is both left and right
topologically introverted. _
In [1], Arens defined a product on the second conjugate space A** by

mQOn, x>=<{m, n (x)> for each m, ne A**, xe A*.

Then A** with respect to this product becomes a Banach algebra. If X is a
topologically left invariant and left introverted subspace of A*, then the
Arens product on X* makes sense and renders X* into a Banach algebra.

If A is an F-algebra, let P, (A) denote all positive functionals ¢ in 4
such that ¢(e) = 1. In this case, ¢y e P,(A) whenever ¢, Y e P, (A).

LEMMA 2.2. Let A be an F-algebra and X be a topologically left
invariant subspace of A*. Then X is topologically left introverted if and only if
for each x in X the ultraweak closure of the set K (x) = {¢-x; ¢p€P,(A)} is
contained in X. In particular, any ultraweakly closed topologically invariant
subspace of A* is topologically introverted.

Proof. If X is topologically introverted, and ye K(x)?, xe X, then
there exists a net {¢,} in P,(A) such that ¢, -x converges to y in the
ultraweak topology. Let m be a weak* - cluster point of {¢,} in A**. Then for
each ye A,

Gy, y) =lm<{Pe-x, y) =lim {xy, @) = {x-y, m) = {my(x), ).

Hence y = m(x)e X. Conversely if K(x)’ < X for each xe X, let m be a state
on A* ie. m>0 and m(e) = 1. By Lemma 2.1, there exists a net {¢,} in
P, (A) converging to m in the weak* -topology of A**. Then if ye A4,

mp(x), y> = <m, x-y)> = lim {@,, x-y) = lim (P, " X, 7).

Hence m;(x)e K(x)° < X. Since every functional in X* is extendable to a
functional on A* and each element in A* is the linear combination of states,
it follows that m;(x)e X for each me X* and each xe X.

If G is a locally compact group with a fixed left Haar measure 4, let
L,(G) (1 < p < o) denote the Banach space of complex - valued measurable
functions f on G such that |f|? is integrable. The Banach algebras L, (G) and
M (G) are as defined in [12]. We also refer the readers to [8] the definitions
and properties of the algebras 4(G), B(G) and VN(G).

3. Uniformly continuous functionals. Let 4 be a Banach algebra.
Denote by

UC,(A) = {A*-A)~ and UC,(4)= <A -A*)".
Elements in UC,(A4) (resp. UC,(S)) are called right (resp. left) uniformly

continuous functionals on A. Also, elements in UC(A4) = UC,(A) n UC,(A) are
called uniformly continuous functionals.
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If A= L,(G) of a locally compact group G, then UC,(A) = UC,(G), and
UC,(A) = UC,(G) the spaces of bounded right and left uniformly continuous
functions on G respectively (see [12, 32.45]). Also if A has a bounded right
(resp. left) approximate identity, then the Cohen’s factorization theorem [12,
32.22] implies that UC,(A4) = A*- A (resp. UC,(A4) = A- A*).

ProrosiTioN 3.1. Let A be a Banach algebra. Then UC,(A) is a
topologically invariant, topologically left introverted subspace of A*. If A is an
F -algebra, then UC,(A) is also invariant under the involution of A*.

Proof. It is clear the UC,(A) is topologically invariant. To see that it
is topologically left introverted, let meUC,(A)*, y=x-¢, then m.(y)
= m,(x)-¢. Hence m,(y)e UC,(A4). Consequently, m; (UC,(A4)) = UC,(A4) by
continuity of the operator m,.

Finally if A is an F -algebra, ¢ A, ¢ > 0, xe A* and y = x- ¢, then for
any yed, y=20, ¢-y=>0 Hence {* y)=1<x,¢7)=<*0¢7)
= {x* ¢, p), ie. y* = x*-¢. Consequently y*e UC,(A4) whenever ye UC,(A)
by continuity of involution.

An element xe A* is almost periodic (resp. weakly almost periodic) if the
map ¢ — x-¢ from A into A* is a compact (resp. weakly compact) operator.
Let AP(A) and WAP(A) denote the collection of almost periodic functionals
and weakly almost periodic functionals on A respectively. Then as known,
xe AP(A) (resp. xe WAP(A)) if and only if the map ¢ — ¢ -x from A into
A* is compact (resp. weakly compact) (see [21, Theorem 4.3] and [18,
Theorem 2.2]). Let R(A) denote the closed linear span of the spectrum of A.

ProposITION 3.2. If A is an F -algebra, then each of the spaces R(A),
AP(A) and WAP(A) is closed, topologically invariant, topologically introverted
and invariant under the involution of A*. Furthermore R(A) =< UC(A) and
{e> S R(A) < AP(A) < WAP(A).

Proof. The first statement follows from [4, pp. 482-487]. If x is in the
spectrum of A, let ¢e A such that ¢(x) =1. Then x ¢ = ¢ x = x. Hence
R(A) = UC(A).

To see that WAP(A) is topologically introverted, we simply note that if
xe WAP(A), the set K(x) is weakly compact, where K(x) is as defined in
Lemma 2.2. Hence the weak and the ultraweak topologies agree on K (x).

Consequently, K(x) = K(x)° € WAP(A). Proofs of the other cases are
similar.

ProposiTiON 3.3. Let A be a Banach algebra.

(@) If A has a left approximate identity, then UC,(A) is weak* dense
in A*.

(b) If A has a bounded left approximate identity, then UC,(A) contains
WAP(A).

Proof. (a) Let [¢,) be a left approximate identity for A4, and let y e 4
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such that ¥ (x) =0 for all xe UC,(A4). Then for each xe A*, we have

x, ¥ =lim(x, ¢, Y = lim (x-¢,, Y = 0.

Hence ¢ = 0. Consequently UC,(A4) is weak* dense in A*.

(b) Let xe WAP(A) and {¢,} be a bounded left approximate identity for
A, then, by passing to a subnet if necessary, we may assume that the net
{x-¢,} converges to some y in A* in the weak topology. On the other hand,
the net {x-¢,} converges to x in the weak* topology of A*. Hence y = x.
Consequently xe UC, (A).

Proposition 3.3 (b) is due to Granirer [10, Proposition 1] when A
= A(G) of an amenable G.

CoroLLARY 34. If A is a C*-algebra, then A* = UC(A) = WAP(A).

Proof. In this case, A always has a bounded approximate identity.
Hence UC(A) 2 WAP(A) by Proposition 3.3. However, it follows from [2,
Theorem 7.1] that A* = WAP(A). The assertion follows.

Remark 3.5. Both Proposition 3.3 (a) and (b) are false when A does
not have a left approximate identity. Indeed if M is any von Neumann
algebra with dimension more than one, and A = M,. Define on A a
multiplication ¢y =y (e)¢p, ¢, yeA. Then A is an F -algebra, and A
cannot have a left approximate identity. Also WAP(A) = A* but UC(A)
= UC,(A) = {le; 1eC).

4. Multipliers. Let G be a locally compact group. Wendel in [23] has
identified the algebra of multipliers of L, (G) with the measure algebra M (G).
McKennon [17, Theorem 5.7] proved an analogue of Wendel’s result for the
Fourier algebra A(G) of a locally compact amenable group. He proved in
this case that the multipliers of A(G) can be identified with the Fourier—
Stieltjes algebra B(G). We shall prove in this section a generalization of
Wendel and McKennon’s results. We first establish a technical lemma that
we shall need.

LEMMA 4.1. Let A be an F-algebra. If A has a right approximate
identity bounded by one, then A has a right approximate identity consisting of
states.

Proof. Let m be a weak* -cluster point in A** of a right approximate
identity in 4 bounded by one. Then m is a right identity in A** and ||m|| < 1.
Also m(e) = 1. Hence m is a state on A*. By Lemma 2.1, there exists a net
{¢.) in P,(A) converging to m in the weak*-topology. Then {¢,} is a weak
right approximate identity of A consisting of states. Now an argument
similar to that in the proof of [20, Theorem 2.2] shows that A also has a
right approximate identity consisting of states.

For the rest of this section, we shall assume that A is an F -algebra and
X is a topologically invariant and topologically left introverted closed
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subspace of A* containing an ultraweakly dense C* -subalgebra of A*. Let
r: A— X* be the restriction map. Then an application of the Kaplansky
density theorem shows that r is a linear isometry and an algebra
homomorphism from A4 into a norm closed subalgebra of X*. We shall
identify ¢ with r(¢) and write

Jr(X*) = {meX*; ¢ OmeA for all peA}.

Then clearly Jg(X*) is a closed subalgebra of X* containing A as a right
ideal. Furthermore if L is any subalgebra of X* containing A4 as a right ideal,
then L < Jg(X™*).

Let My (A) denote the algebra of bounded right multipliers T of A4, i.e. T
is a bounded linear operator from A4 into A4 such that T(¢-y¢) = ¢ T(y) for
each ¢, yeA. If meJg(X*), let U(m): A— A be defined by U(m)(¢) =
¢ O m. Then clearly U(m)e Mg (A) for each meJgz(X*). We list below a few
properties of the mapping U: m — U(m) from Jg(X*) into Mg(A).

ProrosiTioN 4.2. (a) U is a linear norm-decreasing algebra anti-
homomorphism from Jg(X*) into Mg(A).

(b) If A has a bounded right approximate identity, then U is onto.

(c) If A has a right approximate identity bounded by one, then for each
Te Mg(A), there exist meJg(X*) such that ||m|| =||T|| and U(m)=T.
Furthermore, if X is a C* -subalgebra of A* and T is positive, then m can be
chosen to be positive.

(d) U is one-one if and only if (X-A)~ = X.

(e) If U is one-one and Jgx(X*) = X*, then X < WAP(A)nUC,(A).

Proof. (a) is trivial.

(b) Let {¢,] be a bounded right approximate identity of 4. Then for
each Te M (A), let m be a weak*-cluster point of the net {T(¢,)} in X*. Then
for each ¢e A, xe X, we have

(T($), x) =Lm (T (¢"¢,), x) =1im (" T(,), x) = im (T(¢,), x* ¢

={m, x ¢) =<{p Om, x) = U(m)(¢), x).

So T =U(m).

(c) In this case we may choose (by Lemma 4.1) a bounded right
approximate identity {¢,} in A consisting of states. Then if m is a weak*-
cluster point of- {T(¢,)}, we have ||m|| < ||T(¢,)ll <|IT|l. Consequently, ||m]|
= ||T||. Also if X is a C*-subalgebra of A* and T is positive, then T(¢,) are
also positive functionals on X. Hence m is positive.

d) If (<X-A)™ = X and U (m,) = U(m,), m;, my e Jr(X*), then m; (x " ¢)
= m,(x-¢) for each xe X, ¢ A. Hence m, = m,. Conversely, if (X-A)" is
a proper subspace of X, let me X* such that m(x-¢) =0 for all xe X, ¢ 4
and m # 0. Then meJg(X*) and U(m) =0. Hence U is not one-one.
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(e) It follows from (d) that X = UC,(A). To see that X < WAP(A), it is
sufficient to show that Arens product on X* is separately continuous in the
weak*-topology on bounded spheres [21, Theorem 4.1]. Indeed if {n,}-is a
bounded net in X* converging to n in the weak*-topology, and me X*, then
clearly ng © m converges to n © m in the weak*-topology. Also if xe X, Yy € 4,
then

mOng, xy>= (Y Om Ong, x) =<ng, x(y Om))

which converges to (n, x-(y ©O©m)> = MmQOn, x-y> since Yy ©Ome A. Since
Y = {(X-A) is norm dense in X (by (d)), it follows that the weak*-topology
and the o(X*, Y) agree on bounded spheres. Hence m © ng converges to
m O n in the weak*-topology.

McKilligan proved in [18, Theorem 2.1] that if B is an L-algebra with a
(weak) approximate identity bounded by one, and Y is a o-dense C*-
subalgebra of B* which is topologically invariant and contained in WAP(B),
then the algebra of right multipliers of B is isometric and algebra anti-
isomorphic to the largest subalgebra in Y* which contains the image of the
natural embedding of B in Y* as a right ideal. Notice in this case that Y is
topologically introverted [19, Theorem 3.1], and Y < UC,(B) (Proposition
3.3 (b)). Our next theorem is an improvement and generalisation of
McKilligan’s result (see also Remark 4.4).

THEOREM 4.3. Assume that A has a right approximate identity bounded by
one. Then the following are equivalent:

(a) U is a linear isometry and algebra anti - isomorphism from Jg(X*) onto
Mg (A).

(b) X = UC,(A).

In this case, if X is a C* -subalgebra of A*, then U (m) is positive if and
only if m is positive.

Proof. That (a) implies (b) follows from Proposition 4.2(d).
Conversely, if X < UC,(A4) and {¢,} is a right approximate identity in A4
bounded by one, then for each xe X we may (by Cohen’s factorization
theorem) write x = y-¢ for some ye A*, ¢eA. Then

IX=x,ll =ly-¢—y- ¢ dall <I¥llllp—¢"¢dll - 0.

Hence X = X-A. Consequently (a) and the last statement follow from
Proposition 4.2.

Remark 44. (a) Theorem 4.3 (except for the last statément) remains
valid for any complex Banach algebra A which is the predual of some W* -
algebra.

(b) Theorem 4.3 is false without the existence of right approximate
identity. In fact, let M be any von Neumann algebra with dimension greater
than one and let A = M, be the F -algebra with multiplication ¢ ‘¢ = ¢ (e)¥,
¢, YyeA. Then A has left identities but no right approximate identity. Also
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UC,(A) = A*. Let X = UC,(A). Then Jx(X*) = A, and Mg(A) = #(A), the
algebra of bounded linear operators from 4 to 4. Now U is not onto since
the identity operator I is in Mgz(A) but U(m) # I for any meJg(X*).

CoROLLARY 4.5. Let A be an F-algebra with a right approximate
identity bounded by one. Let X be a topologically invariant and topologically
left introverted ultraweakly dense C* -subalgebra of A* contained in UC,(A).
Then Mg(A) is isometric and order anti-isomorphic to the largest closed
subalgebra of X* containing A as a right ideal.

5. The dual algebra UC,(A*). When G is a locally compact group,
Curtis and Figa-Talamanca [3, Theorem 3.3] has identified the space of
bounded linear operators T from L_(G) into I (G) commuting with
convolution by L, (G) with the dual of UC,(G). The author [14, Theorem
6.2] and independently Carlo Cecchini (private correspondence) have
obtained the analogue result for bounded linear operators from VN (G) into
VN(G) commuting the action of A(G) when G is an amenable locally
compact group. Our next theorem is a generalisation of these two results to
operators on the dual algebra of an F -algebra.

THEOREM 5.1. Let A be an F -algebra with a right approximate identity
bounded by one. Let X be a closed, topologically invariant and topologically
left introverted subspace of A*. Let Y = X+ A. Then Y is a closed topologically
invariant and topologically left introverted linear subspace of UC,(A). Also the
mapping Q: m— my is a linear isometry and algebra isomorphism from Y*
onto the algebra of bounded linear operators T from X into X such that
T(x-¢)=T(x) ¢ for all xe X, pe A, where {m (x), ¢> = (m, x-¢), me Y*.

Proof. That Y is a closed linear space follows from Cohen’s
factorization theorem [12, 32.22]. Also an argument similar to that for
Proposition 3.1 shows that Y is topologically invariant and topologically left
introverted.

If me Y*, then my(x @) = my(x)-¢ for all xe X, pe A and ||m,]| < ||m||.
To see that equality holds, let {¢,} be a right approximate identity of A4
bounded by one. Then for each ze X- A4, ||z-¢,—z|| —= 0. Hence

lmp )| = [<mL(2), @l = |<m, 2 @)
which converges to |{m, z)|. Hence |im,|| = ||m]|.
It is easy to see that if m, ne Y*, then (n © m), = n (my). Finally let T
be a bounded linear operator from X to X and T(x-¢) = T(x):¢ for all

xe X, ¢pe A, let m be a weak*-cluster point of the net {T*(¢,)} in Y*. Then if
xe X, ye A, we have

(T(x), y) =lim<(T(x), y: @,) = lim (T (x)"y, ¢,

= lim (T(x}’), ¢a> = <mL(x)’ }’>

Hence T =m,, ie. Q is onto.
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COROLLARY 5.2. Let A be an F -algebra with a right approximate
identity bounded by one. Then UC,(A)* is an isometric algebra isomorphic to the
algebra of bounded operators T from A* into A* such that T(x-¢) = T(x): ¢
Jor all xe A*, and ¢e A.

Remark 5.3. Theorem 5.1 is not true- when A does not have a
bounded right approximate identity. Indeed, let 4 be the F -algebra
considered in Remark 4.4(b), and X = A*. Then Y = UC,(A) = A* and Q is
not onto, since there exists no m in A** such that Q(m) is the identity
operator on A*.

6. Invariant means. Let A be an F-algebra and X be a closed
topologically invariant subspace of A* containing e. Then an element me X*
is a topological left invariant mean (TLIM) on X if ||m|| = m(e) =1, and
m(x-¢) = m(x) for each ¢ e P,(A4), xe X. Topological right invariant mean
(TRIM) is defined similarly.

It is well known that when G is a locally compact group, then L, (G)
has a TLIM if and only if UC(G) (bounded uniformly continuous functions
on G) has a TLIM (see [11, Theorem 2.2.1]). The following is a
generalisation of this result:

ProrosiTiON 6.1. Let A be an F -algebra.

-(a) A* has a TLIM if and only if UC,(A) has a TLIM.

(b) If A has a left approximate identity, then A* has a TLIM if and only
if UC(A) has a TLIM.

Proof. (a) Clearly the restriction of any TLIM of A* to UC,(A4) is a
TLIM. Conversely, if me UC,(A)* is a TLIM, let ¢,€ P, (A) be fixed. Define
mi(x) = m(¢o-x) for each xe A*. Then i is a TLIM on A*.

(b) Again we only need to prove that if UC(A4) has a TLIM m, then so
does A*. Let ¢oeP,(A) be fixed. We first show that m(¢y-x-y¥,)
= m(do-x-Y,) for any ¥, Y€ P,(A), any xe A*. Indeed, let {¢,} be a left
approximate identity of A4, then for each xe A* we have:

m(¢o'(x"/’1)) = limm(¢o'(X°¢,'l/11)) =limm(¢o-x*@,)
= limM(lﬁo'(X‘d)a'lﬁz)) = limm(¢py-x-y3).

Let yoeP,(A) be fixed, and define #i(x) = m(¢po-x o). Then if
Y e P,(A), we have

m(x-y) = m(¢>o'x'(¢ '9/’0)) =m(¢o" X Yo) = Mi(x)
by the above.

Remark 6.2. Proposition 6.1(b) is false when A is not assumed to
have a left approximate identity. Indeed, let 4 be the F -algebra defined in
Remark 3.5. Then UC(A4) = {ie; AeC} has a TLIM, but A* has a TRIM
but not a TLIM.
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ProPOSITION 6.3. Let A be an F-algebra. Let X be a topologically
invariant closed subspace of W AP(A) containing e. If X has a TLIM m and a
TRIM n, then m = n. In particular, if A is commutative, then W AP (A) has a
unique topological invariant mean.

Proof. Let i be an extension of m to A* with the same norm. Then m
is a state of 4A*. Let ¢, P,(A) be a net converging to m in the weak*-
topology (Lemma 2.1). Then for each (fixed) xe X, the net {¢,-x} converges

to m(x)e in the o-topology of A*. Since K(x) is weakly compact, where
K(x) = {¢-x; ¢eP,(A)}, it follows that the weak topology and the o-
topology agree on K (x). Consequently m(x)ee K(x). So we may find a net
[y x}, Yp€ P, (A), converging to m(x)e in the norm topology. Similarly, we
can find a net {x-n,}, n,e P,(A), converging to n(x)e in norm. Hence

Im(x)—n(x)| = [im(x)e—n(x)el|

< JmEe—vy-x): ]| +[¥s - (x -1~ n(x) €] = .

Consequently m = n. The last assertion follows from Example after Corollary
4.3 [15].
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