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1. Introduction. In a number of papers (cf. [4], [6], [7], [12], [13]), a
theory of tent spaces has been developed, with interesting applications to
harmonic analysis. The reader is referred to [5], [16] for a survey on tent
spaces and also to [1], [23], [24] for more applications.

In this paper, we study a class of operators related to the Poisson trans-
form, in the context of tent spaces and HP” spaces. Following the notation
in [21], p. 308, we call these operators Poisson-like operators. They are
closely related to the Calderén-Zygmund theory. Indeed, the Littlewood-
Payley decomposition of an operator associated with a standard kernel
(cf. [10]) is, under certain conditions, a family of Poisson-like operators.
One could roughly say that to prove the celebrated T(1) Theorem (cf. [9],
[14]) is to prove a suitable continuity result for a Poisson-like operator whose
kernel has some cancellation. In the same spirit, paraproducts (cf. [8]) are
also closely related to Poisson-like operators. Furthermore, the notion of
Poisson-like operator plays a crucial role in [9].

The connection between tent spaces and HP spaces is provided by a
convolution-like operator, 7, introduced in [13]. This operator is a partic-
ular case of a Poisson-like operator. However, for the end point spaces T2,
0 < p £ 1, this operator is not continuous from T? into HP. Nevertheless,
since T%? is continuously included in L"(R;‘_"’l,p), where p is a Carleson
measure of order ¢/p, a natural possible substitute for these operators can
be obtained by replacing the measure dzdt/t by a positive Borel measure
u(y,t) defined on R}*!. Then, the corresponding Poisson-like operator act-
ing on a function f(y,t) is the composition of two operators: multiplication
of the measure u(y,t) by the function f(y,t), which produces a new measure
fdu, and then a balayage of this measure (cf. [6]). For example, if f € TZ,
0<p<1andpe€ VP (cf [15]), by the duality theory (cf. [4], [7]), fdu is
a finite measure. The balayage of a finite measure is in L.
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From this point of view, Poisson-like operators extend the ones consid-
ered in [6]. In fact, the methods developed in [6] play an essential role
here.

Another important connection is given by [19], where essentially the
adjoints of our operators are studied in the context of weighted L? spaces.
We give a different approach to some of the results in [13] and we are able
to consider a different set of indexes as well.

Our paper is divided into three sections. In Section 2, we make precise
the definitions involving Poisson-like operators and we describe in detail
the connections with the Calderén-Zygmund theory and the operator .
In Section 3, we prove continuity results in tent spaces, H? spaces and
Lipschitz spaces. Sometimes our techniques will resemble the methods used
in the Calderén—Zygmund theory, while other results will be proved in the
spirit of balayages.

The notation used in this paper is standard. It may be useful to point out
that given 1 < p < 00, p’ will denote the conjugate exponent, 1/p+1/p' = 1.
Also, when there is no further explanation, the usual symbols Cg°, D’,
L?, etc. will refer to spaces of functions defined on R™, with respect to
the Lebesgue measure. Otherwise, the space will be denoted LP(R}*!, ),
L®(R}*!), etc. The subindex 0 will indicate a space of functions with
compact support.

2. Poisson-like kernels and Poisson-like operators

DEFINITION (2.1) (cf. [6], p. 31). Let k(z,y,t) be a continuous function,
k: R* x Rf,‘_'” — C. The function is a Poisson-like kernel if it satisfies the
following conditions, for some 0 < § < 1:

(Cy) k(2 9, 8)| < et /(| - g] + )",
(Ds) |k(z,9,t) = k(2,3,8)| < el = 2|°/(ly - 2| + )"*°
if2lz—z|<|y—2+t.
ExAMPLE (2.2). Let ¢ : R® — C be a C? function. Suppose that

(23) lo(2)] + [Ve(2)] < e(1 +|z])~*

for some ¢ > 0. Then ¢i(z — y) = t™"p((z — y)/t) is a Poisson-like kernel,
for 6 = 1.

Proof. Let us first prove condition (C;). According to (2.3),
lee(z - y)| S ct™™(1+ |z —yl/t) ™ =et(1 + ]z —y|)™".
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Let us now prove condition (D;). We have

1
o =9) = ez =9l = o | J 05 46552) (@ - )

|z—z|f ds

S T Ay

o (e 1)
If2|z—z|<|y—z|+t,then|z—y+s(z—z)|+t2|y—z|—|z—z|+t2
L(ly - 2| + t). Thus,

loe(z — y) — w2 — Y)| < elz — 2| /(ly — 2| + )"+
This completes the proof.

It should be noted that the Poisson kernel itself is a particular case of
Example (2.2). Another important example is the kernel of the operator 7,
introduced by R. Coifman, Y. Meyer and E. Stein (cf. [13]) to provide the
link between the tent space T3 and the Hardy space HP when 0 < p < 00
or the space BMO when p = oo. For future reference, we will now state
precisely the definition of .

Consider a C! function satisfying (2.3). Suppose that ¢ also satisfies a
cancellation condition, namely,

(2.4) [z'p(z)dz=0, 0<|y|<N,

for some N = 0,1,... Now, set as usual, p,(z) = t~"¢(z/t) and define, at
least formally,

(25) ()= [1G0v 0T
0
given f: R}t - C, or
(26) nN@= [ ede-pfen2E

R:-H
where @¢(z — y) is a Poisson-like kernel.

EXAMPLE (2.7). This example deals with paraproducts (cf. [10], Ap-
pendix I). It is not difficult to show that given a function b € BMO, the
operator M, of pointwise multiplication by b will not, in general, be contin-
uous on L%. A paraproduct is essentially a redefinition of the operator M,,
to give a bilinear, continuous action from L? x BMO into LZ.

Paraproducts are related with a very interesting subclass of the Hérman-
der class LT", called paradifferential operators (cf. [8], [15], [20]).
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Paraproducts also play a crucial role in the original proof of the T(1) The-
orem (cf. [14]). Indeed, they are used to reduce the given operator to one
satisfying vanishing conditions, (1) = T*(1) = 0. More precisely, it suffices
to show that given b € BMO, there exists a Calder6n-Zygmund operator L
such that L(1) = b, L*(1) = 0. There are many ways of constructing L. But
whatever definition is chosen, the notion of Poisson-like operator appears as
a central one in the estimates.

As an example, we will now give a definition of L as a paraproduct due
to E. Stein. Let ¢, ¥ € S be radial functions satisfying

supp(9) C {l¢1 < 1/4},  [pda=1,

. X dt
supp($) C {1< €< 2}, [t T =1, £#0.
Given f € C§°, consider, formally,

(2.8)

(29) L) = [ (oo D)(z) (bevb)(z) .
0

It can be proved (cf. [2], p. 20 for details) that (2.9) defines, in the weak
sense, a Calderén-Zygmund operator satisfying
(2.10) IL(HllL2 < ellbllamoll fllLas  L(1) = b, L7(1) = 0.

It is central to the proof of (2.10) to identify the kernel of (2.9) and to
estimate it.
We can write, formally,

1N@ = [ ([ ode=s)fw)dy)wes b)),

0

or

@1)  LNE@= [ ede- )@ fw) L.

R:'H
We claim that the kernel
(2.12) L(z,y,t) = pi(z — y)(¥e * b)(z)

is a Poisson-like kernel, for § = 1. More precisely, we will prove the following
estimates:

(2.13) |L(z,y,t)| < et/(|z — y| +)**,
(2.14) Ve L(2,9,8)| < ¢/ (|2 — y| + )"

Condition (D;) will easily follow from (2.14).
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Proof. Since ¢ € S, we have |p(z — y)| < ¢/(1 + |z — y|)**!, or
lps(z — y)| < et/(|Jz — y| +t)"t1. On the other hand,

1

|(%¢ * b)(z)| = | = f Yi(z — 2)b(2) dz|.

tn
lz—z|<2t

If b(z,t) denotes the average of the function b over the ball B(z,2t), of
center z and radius 2¢, the integral above can be majorized by

1
¢ ||¥llL- 1Bz, 20 B(zfm |6(z) — b(z,t)| dz < ¢ ||¥]|lL~ ||bllBMO -

This proves (2.13) when % has compact support. Now
VL(@,0,8) = 3(VO(z = 1)(Be +8)(2) + u(s = 1)3(V)e # D)),

VoL(z,9,1) = ~1(Vo)(z - 3)(be * b)(a).

Thus, the same computations as before show that (2.14) also holds. This
completes the proof of the claim.

EXAMPLE (2.15). The previous example dealt with the original proof of
the T(1) Theorem. We will show how the notion of Poisson-like kernel also
appears in the shorter proof due to R. Coifman and Y. Meyer (cf. [11]).

In fact, let T : Cg§° — D' be a linear and continuous operator and
suppose that the distribution kernel k(z,y) defined by T is a continuous
function on R™ x R™\diagonal, satisfying the standard estimates (cf. [10],
p. 78)

(2.16) k(z,y)| < c/lz - y|",

(2.17)  |k(z,y) — k(z,y)| + [k(y, ) - k(y, 2)| < C—ly_;lilﬁ

if 2]z — 2| < |y — 2|, for some 0 < ¢ < 1.

Suppose also that T satisfies the weak boundedness property (WBP): Given
B C Cg° a bounded subset, there is ¢ > 0 such that for any ¢, ¥ € B,
z€R", t > 0, we have,

y—2 T -2z
(e (7). 4(5))
Then, under the above conditions, the following representation formula for T
holds (cf. [11)).

Let ¢ € Cg° be a radial function such that supp(p) C {|z]| < 2}, ¢(2) =1
if |£] <1,0< ¢ <1, fpdz=1. Let Py(f) = ¢ * f. Notice that according
to Example (2.2), ¢; is a Poisson-like kernel. But, also, ¢, is somehow a nicer

(2.18)

< ct".
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kernel, since ¢ has compact support. Nevertheless, not all the conditions
imposed on ¢ are essential.
Now, in the weak sense, we can write
(>

d dt
(2:19) T=- of S (PTP)~

(cf. [2], p. 29, for details). Let us examine closer the integral in (2.19). In
the weak sense,

%(PgTPg) = %‘Pi* TPg +PtT ::t(pt* .

d
But

o= () =[S e, = v

where [1dz = 0. Let Q; = ¢ . Thus, in the weak sense, the following
Littlewood—Paley decomposition holds:

(2.20) T= [(@TP+PTQ)L.
0

We will now show that the two operators Q;TP,, P,TQ, are defined
by almost Poisson-like kernels. Indeed, since (P,TQ:)* = Q:T*P; and T,
T* satisfy the same conditions, it suffices to consider Q:TP;,. Fort > 0
fixed, QT P, is certainly a linear and continuous operator from C§° into D’.
Moreover, it is an integral operator, formally

(2.:21) QTP(f)2)= [ K= ut)f(y,)=—

ntl
a+

dy dt

where the kernel k(z, y,t) is the C*(R™ x R}+!) function given by

(2.22) k(z,y,t) = (Te:(v - y), Ye(u — 2)).

We claim that k(z, y, t) satisfies condition (C,) as well as the almost (D.)
condition:
|z — 2] te
AD yt) — k(z,9,t)| <
(AD:)  |k(z,y,) = k(z, 9, )| < e— (v =2+ O+

if2lz—-z|<|y—2|+1t.

Observe that condition (AD,) coincides with condition (D.) when |z —2| < ¢
or when € = 1.

Let us first prove condition (C.). We will consider two cases. First,
suppose that |z — y| < at, for some a > 0 to be fixed. We observe that
Ye(u—z) = t™" (W + (v — y)/t), where W = (y — z)/t. Therefore,
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{p, ¥(W+ )}iw|<a is a bounded subset of Cg°. Since T has the WBP, from
(2.22) we get

k(z,y,t)| < ¢/t < et/ (|z - y| + )"

Now, suppose that |z — y| > at. Since supp pi(u — y) C {|u -"y| < 2t},
supp ¥¢(u — z) C {|u — z| < 2t}, they will be disjoint if we select, say, a = 6.
Thus, we can write

(2.23) k(z,y,t) = [ k(u,v)p(v - y)te(u - z) dudv.

Since [ ¥ dz = 0, we can also write

k(z,y,t) = f (k(u,v) — k(z,v))pe(v — y)¥e(u — z) dudv.

With all our hypothesis, |z — v| > |z — y| — |y — v| > 4t > 2|z — u| and also,
|z—v| > |z—y|-2t > %lz-—yl. Thus, |k(u,v)—k(z,v)| < cJz—u|*/|z—y|"t*
and then

€ tt

k t)| < < .
|k(z,y, )| < c|z — ylnte = c(|a: —y| + t)nte

Let us now prove (AD.). We have

1
Kz 9,t) = k(z,9,0) = [(Vok)(z + 8(z ~ 2),9,) - (z — 2) ds
0

1 .
= [ (Tov-y),t ™ (Vav)i(u — 2 - 8(z — 2)) - (z - 2)) ds.
0

We use condition (C,) with the kernel defined by

(Toe(v =)yt (Vah)e(u — 2 — 8(z — 2)) - (z — 2))
to obtain

tt

1
z - 2|
A Y P PP e

lk(.’t, y’t) - k(z’ y’t)l <c

But since we are supposing that 2|z — 2| < |y — 2| +t, we have t + |2 +
s(z—2)—yl>2t+|y—=2|-|z—z| > 1(t+ |y - z|). Thus, k(z,y,t) satisfies
condition (AD,.). This completes the proof.

Remarks (2.24). (i) The formula (2.21) will rarely be well defined,
unless some cancellation is built up into the kernel. This can be accom-
plished by either reducing the operator T to vanishing conditions, when
T(1), T*(1) € BMO (cf. [14]), or by adopting a more refined version of
the representation formula (2.20) (cf. [11]). The problem is caused by the
presence of the measure dydt/t, which is not locally finite near ¢t = 0.
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Observe that the operator 7, defined in Example (2.2) has this cancel-
lation property, due to condition (2.4).

(ii) With the same proof, it is possible to show that the function k(z,y,t)
given by (2.22) also satisfies

|z — 2| te
t (ly—2l+t)n+e
if2le—z2|<|ly—z+t.

(2.25) |k(y,z,t)— k(y,2,t)| < ¢

(iii) It is interesting to point out that given an almost Poisson-like kernel
k(z,y,t) satisfying (2.25), the integral

T dt
(2.26) !k(ﬂ?, yst) -t-
will converge to a standard kernel k(z,y) satisfying (2.16) and (2.17) for

0 < & < & (cf. [17], p. 26).
Proof. Let us first prove (2.16). Using condition (Cs), we have

(o o}

(o o]
dt té dt
—< —_
!Ik(z’y’t)l t - C(;[ (Ia:—y|+t)"+5 t

¢ f st ds
Cle-yr J (L4 et s

_ C
|z — y|n

Let us now prove (2.17). We only consider the first part, the proof of
the second part being the same.
Suppose 2|z — z| < |y — 2|. Then

l==z|

dt
k(z,9) = k(2,0 < [ |K(z,9,8) - K(z,9,0)| —
0
Fy dt
+ f |k(z’ yat) - k(z’ Y, t)l T
|z—z|
=5 + I,

where
|z—z| |z—z2|

dit dt
Il < 6f lk(z’ y’t)l T +c 6[ Ik(z, Y, t)l —t_
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Ty (z-ul+t)mte e g (y-zl+t)~+e ¢
<c " t! -d—t
T g (y—z+y)nte
lz—z21/ly-2| o) _d_s . |z — z|°
S J Tro s S
(oo
|z — 2| 8 dt
Iz <c¢ —_—
AR CEFET
e |z — 2| }? $$  ds . |z — 2|
ly - (14 s)n+8 82 = "y — z|n+e

z~z|/ly-z|
for any 0 < € < §, with ¢ = ¢(¢) > 0. This completes the proof.

Let us point out that conditions (Cs), (Ds) and (2.17) become stronger
as b, — 1.

(iv) Conditions (Cs) and (Ds) can sometimes be replaced by integral
estimates in the spirit of [18] (cf. [19], p. 215).

Formulas (2.6), (2.11), (2.21), as well as the notion of balayage intro-
duced in [6], suggest the following definition.

DEFINITION (2.27). Let T : LP(R%*!) — D' be a linear and continuous
operator. We say that T is a Poisson-like operator if there exists a Poisson-
like kernel k(z, y,t) and a nonnegative Borel measure y(y, t) defined on R}*!
such that

(2:28) T(f)z) = TeulH)2)= [ ka=9,0)f(y,t)dn(y,1)
n1+1
a.e. in R™.

Poisson-like ‘opera,tors can be viewed as formal adjoints of operators con-
sidered in [19]. Indeed, given a Poisson-like kernel k(z,y,t) we can define
(cf. [19])

(2:29) K(9)¥)= [ k(z,y,)9(z)dz, g€ L.

3. Continuity properties. As mentioned in the introduction, our
purpose is to study the continuity of Poisson-like operators defined by gen-
eralized Carleson measures, in the context of tent spaces, H? spaces and
Lipschitz spaces. Some of these results can be obtained by simply reading
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off known results on balayages, combined with some interpolation results
(cf. [4), [6], [17], [13]). Sometimes, it will suffice to suppose that the kernel
k(z,y,t) satisfies condition (Cs).

For example, if f € T2, 1 < p < 0o and g € V/?, then the duality
theory implies that fdu is a finite measure. Thus, we obtain the result

(3.1) ITk,u(Nllzr < e llullvars | fllzg

provided that k(z, y,t) satisfies condition (Cj;).
When p is a Carleson measure and k(z,y,t) meets the (Cs) condition,
the operator T} , satisfies

(32) 1Tkl Lo < e llpllva [1£llLogmy+ -

This follows by duality from the very definition of a Carleson measure in
terms of the continuity of the Poisson transform.

The space TE usually plays an auxiliary role in the study of Poisson-like
operators. Let us recall the mechanism involved.

Let f(y,t) be a continuous function on R}*! and let p be a Carleson
measure of order a > 0. Then

(3-3) p{(v, ) | 1 f(9,)] > A} < el{z | Aco(f)(z) > A}H®
where A, denotes the nontangential maximal function. Thus,
(3.4) 1 Mzeqrts g < € lllve Aoo(£lnre-

Particularly, we can carry the above analysis when f(y,t) = K(g9)(y),
given a kernel k(z,y,t) satisfying (Cs). Since the (Cs) condition implies
that

(3.5) Ao (Ki(9))(z) < cM(g)(z)

where M is the Hardy-Littlewood maximal operator, we can combine all
the above with the maximal theorem to conclude the following.

THEOREM (3.6). Let k(z,y,t) be a kernel satisfying (Cs) and let u be a
Carleson measure of order a > 0. Then, given 1 < p < 00, the following
continuity properties hold:

(i) K¢: LPP* — LP*(RTH, p).
Gi) K, : LP — T?..
(iii) Tk, : LP(R}*,p) — L9, provided that o > 1, ag’ = p'. Thus,
a<p <oo.

When a > 1, part (i) implies that K; maps L? into LP*(R%}+?, u). This
was proved in [13], with a different approach. Part (iii) is the dual version
of this result.
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We will now define two maximal functions. One generalizes the sharp
maximal function of C. Fefferman and E. Stein (cf. [22], p. 199) and the
other generalizes the maximal function C, (cf. [13]).

DEFINITION (3.7). (i) Let A>0,1<¢g< oo, f€ L} _. Then .

loc*

(3.8) Sxa(f)(2) = sup inf (I_I:I—* Bf F(y) = clqdy)llq

where the supremum is taken over all balls containing z.

(ii) Let p(y,t) be a nonnegative Borel measure on R}+! and let a > 0,
f € LP(RT*). Then

(3.9) Ca,o(f,p)(z) = sgp( | Blla

[ 10l dutu,n) "

T(B)

where the supremum is taken over all balls containing z and T'(B) denotes
the tent over B.

Remarks (3.10). (i) The condition S 4(f) € L* defines the space
L) ,q. The following characterizations are known (cf. [22], p. 213):

Iy, = L9, A=0,
Ly, = BMO, A=1,
LA,q = Lipn(k—l)/q’ 1< A < 1+ Q/n.

(ii) The condition Cy 1(1, 1) € L™ describes the space V' of generalized
Carleson measures, at least when o > 1.

The next result shows the connection between the maximal functions
Sxg (Tx,u(f)) and Co,q(f,p). It resembles the pointwise estimate of
(T(f))#¥ in terms of the Hardy-Littlewood maximal operator, when T is
a Calder6n-Zygmund operator (cf. [10]).

THEOREM (3.11). Let Ty, be a Poisson-like operator and suppose that
it maps continuously LP(RT‘,p) into L? for some' 1 < p,q < 0. Then,
given A € R, f € LP(R}H),

(3.12)  Sxo(Tk,u(f))(z) < Cxp/a,o(f> 8)(2) + €Crjg-1/g111(f, 8)(2)
provided that § + (n/q)(1 - A) > 0.

Proof. Let B = B(z,0) be a ball, z € B. Given f € L(R}*!), we
consider the usual decomposition

f=fxres) + f(1-xreB) =i+ f2
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where 2B denotes the ball B(z,20). Let us also choose

c= I Kzy,0)f(t) du, ).
R}*\T(2B)

Observe that according to the hypothesis, c is well defined. Thus,

(i3 J 1T = cltan) ™
B

1 1/q 1 1/
s IBIA/J( Bf ITh (o)l du) " + W( Bf Teulfe) - cltdu) .
The first term can be majorized by
¢ 1/p
— p
|B|A/q( ] du(y,t))
T(2B)
1 1/p
—_— 2
< (e, [ M@ OPdus,0) 7 < Conraslhife),

which is the first term in (3.12). Consider now the second term:

Tﬁi]m—( f ITk'ﬂ(fZ) - clq du)llq
B

<= ([ ([ wnn-keunllfw0ld) d)

A/g
|B| B R3*'\T(2B)

If (y,t) € T(2B), by definition of T'(2B), there exists v € B(y,t) \ B(z,20);
that is to say, |[y—v| <t, |v—2| > 20,0r |y— 2|+t > 20 > 2|u — 2z|. Then
we use condition (Ds) to obtain

1 u—z|° 1/q
|B|z\/q( f ( f (ly l 2 _:It)n+5|f(y,t)|dp)q du)

B R}*\T(2B)

1 |£(y,1)|
< J dp(y,t)
X/q=6/n-1/ _ nto
| B|*/a " aronzam WA
- 1 | f(y, 1)l
- |B|A/q-6/n-1/q Z f (l,y _ zl + t)"+5 dl‘(!ht)'

i21 T(29+1 B)\T(2’ B)

As before, if (y,t) € T(2/B), then |y — 2| +t > 270 = ¢|2/B|'/". Thus, the
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above expression can be majorized by

2J'(A/Q-I/Q-5/n)
°2 |27 B a-1/a+1 I 1@ 0ldu(y,1)

< ¢Cxg-1/q+11(f #)(2),
since A/qg — 1/g — §/n < 0. This completes the proof.

THEOREM (3.13). Let Ty, be a Poisson-like operator, where pu is a Car-
leson measure of order a, 1 < a < §/n+ 1. Then

Tiw: LERE) = Loga-1),4
continuously, provided 1 < q < 00, agq’' = p', and thus a < p’' < 0o.

Proof. If we replace the above hypothesis in Theorem (3.11), using
Theorem (3.6)(iii), we conclude that (3.12) holds. Moreover,

ICpra.0fs )l < ellBlVE 1]l
ICxrsg-1/9+12(fsp)llL= < ellpllve [|fllL=,
when a = Ap/q = A/q - 1/q + 1. Notice that 1 < a < §/n + 1 implies that
6/n — q(A —1) > 0. Thus, according to (3.12), we conclude that

Se(a=1)+1,¢(Tk,u(f)) € L.
This completes the proof of the theorem.

Remark (3.14). The conditions 1 < a < §/n+1,a = (A -1)/g+1,
aq¢' =p', a = Ap/q imply that 1 < A < §q/n+1.

Thus, we deduce from the characterizations in Remarks (3.10)(i) that
under the hypothesis in Theorem (3.13),

Ti,: LP(RTH) - BMO ifa=1,
Tiu: LP(RY') = Lipya-yy ifl1<a<é/n+1.

These continuity properties (3.15) can be seen in some cases as reinter-
pretations of known results on balayages (cf. [6]). Indeed, if u is a finite
Carleson measure and f € L*(R}*!), then fdp is.a finite Carleson mea-
sure and the balayage with a Poisson-like kernel is in BMO N L! (cf. [6],
p. 31). Now,if f € L°°(R1+1) and u is a finite Carleson measure of order a,
1 < a < §/n+1, then the balayage of fdu with a Poisson-like kernel belongs
to L*° N Lipy(g-1) (cf. [6], p. 31).

In the same spirit, we can prove

(3.15)

(3.16) Ty, : T2 — L7 if p is a Carleson measure, 1 < p < o0.

Indeed, if f € T1, then by duality (cf. [13]), fdu is a finite measure
and therefore, its balayage is an integrable function (cf. [6]). Finally, (3.16)
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comes from interpolating 7%, — L and L°(R}*!) — BMO (cf. [4], p. 159).
In a similar fashion, we also have
Tr,: TMoU S LVl ifueVve, 0<ea<l,

3.17
(3.17) Trp: TY* LM ifpeW?®, 0<a<l.

THEOREM (3.18). Let Tk, be a Poisson-like operator, where u is a Car-
leson measure of order a > 1. ThenTy , : TZ — L° in each of the following
cases:

i)o<r,s<l,1<a<l/rl/s=1/r-a+1,
(ii)0<r<l,1<8<00,1/r<a<]l/r+1,1/s=1/r—a+1,
(iii)o<r<L1l/r+l=a>1+6/n,s=occ.
Proof. (i) Pick a pair (p, ¢) satisfying the conditions in Theorem (3.6)
(iii).
Now, given an (r,00) atom a € TZ,, suppose that supp(a) C T(B),
B being the ball B(z,0). We can write

(319)  [ITeu(0)"dz = f ITeu(@)*dz+ [ |Tiu(a)l* da.
R*\2B
The first term can be ma_]onzed by

(3.20) clBll"/"( 1l ITk,,,(a)l"dz)‘/ ’

/
<eBI/1( [ la(wt)Pdu(s,1)" < cBletelrlr = .
T(B)

For the second term, we need to use condition,(Cs). Thus, we have

e [ ([ el |a(y,t)|du<y,t))'dz

R*\2B  T(B)

-3/ s
= el rn--\jz‘za (T(i{) (lz - yl+t)"+‘ d“(y’t)) -

Now, if z ¢ 2B and (y,t) € T(B), then |z — 2| > 20 > 2|y — 2| and thus,
| —yl+t>|z—2|—|y— 2]+t > 1z - z|. Thus, the integral above can
be majorized by

c|B|6a/n—a/r+aa f d:: 5 < clBI&a/n-a/r+aa+l-(1+6/n)o = c.
- n s =
This completes the proof of (i).

(ii) With the above notation, the estimate of the second term in (3.19)
works the same. To majorize the first term, first choose 1 < p < oo such
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that @ < p’ < as’. Then the pair (p,q) with ¢’ = p'/a will again satisfy
the conditions in Theorem (3.6) (iii) and also, ¢ > s. Thus, we can use
Hélder’s inequality with exponent ¢/s to obtain the same conclusmn as in
(3.20). This completes the proof of (ii).

(iii) Given an (r,00) atom a € T7,, suppose that supp(a) C T(B),
being the ball B(z,0). The conclusion will be an immediate consequence of
the following pointwise inequality:

(3.21) |Tk,u(a)(2)| < ex2B(2) +

Let us prove (3.21). We have

ITeu(a)(2)| < €
¥ T({, (1=~ 3l

Suppose first that z € 2B. Thus, B C B(z,30) and

|l+6/n

c
mlB XR=\2B(%).

t6
el .

- du(y,t)
|Te u(a)(z)| < c|BIS/mYr [ .
T(B(z,30)) (|$ - yl + t)"
Since n + 6 < na, we can apply Lemma 2 in [6], p. 32, to obtain
Tk u(a)(z)| < ¢| B|S/m=1r+1/n(an—5-n) _ .

if z € 2B. Now, if z € R*\ 2B, (y,t) € T(B), then |z —y|+t > |z — y| >
|z — 2| = ly— 2| > }|z - 2|. Thus,

| Tk, u(a)(z)| < |8/n=1/r+a

Pl
if z € R\ 2B.
This completes the proof of the theorem.

It should be observed that the condition & > 1+ §/n in Theorem (3.18)
(iii) is still unclear to us, except for its technical role in our proof.

THEOREM (3.22). Let Tk, be a Poisson-like operator, where p is a Car-
leson measure of order a > 1. Moreover, assume that the kernel k(z,y,t)
satisfies the cancellation condition

(3.23) [ kz,y,t)dz=0, (y,t) eRIH.
Rﬂ
Then Ty, , maps continuously T7 into H?®, provided that
(324) o0<r<i, 1/r-é/n<a<l/r, l/s=1/r+1-a

Proof. Pick a pair (p, q) satisfying the conditions in Theorem (3.6) (iii).
It suffices to prove that given an (r,00) atom @ supported in a tent T'(B)
over a ball B = B(z,0), the image T} ,(a) is an (s, q,8) molecule related
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to B, for some n(g/s — 1) < 6 < g(n + 8) — n. That is to say, we will prove
that T .(a) satisfies the following conditions (cf. [3]):

(i) J|Tk,u(a)|? dz < c|B*~9/2,
(ii) [|Tk,u(a)l%z — 2|° dz < c|B|?/n+1-9/3,
(iii) f Tk,u(a)dz = 0.

Let us prove first condition (i). We have

fITk,#(a)lqd:D < c( f |a(3”t)|”du(y,t))”p

T(B)
< c|B|-q/r+aq/p = ¢|B[}~9/°.

Now, consider (ii). We split the integral in two terms:

[ 1Tk u(a)l%le ~ 2|° dz
2B
/
<elBI( [ la(w O du(u,1)"" < clBpin-stsreats
T(B)
= clBla/ﬂ-l-l—q/a.

To estimate the other term,

(3.25) | 1Teu(@)lfle - 2I° de,
R"\2B

we will obtain a pointwise estimate for |T ,(a)(z)|, when |z — 2| > 20,
similar to the second term of (3.21). Indeed,

ITiu(@)(@) < [ Ik, 9,0l |a(y, )] du(y, t)
T(B)
t5

S c _ yl + t)"+6 Ia(y, t)l d”'(y’ t)’

If |z—z| > 20 and (y,t) € T(B), then |z—y|+t > |z—2|—|y—2|+t > L|z—2|.
Thus, the above integral can be majorized by

clBI&/n-l/r+a/Iz - z|n+6.

Then, replacing in (3.25), we obtain the estimate
c'BI(G/n-—l/r+a)q-|-1+0/n-q(l+6/n) — c|B|9/"+1“'/’.

It is shown in [3] that any function satisfying (i) and (ii) is integrable.



CALDERON-ZYGMUND OPERATORS 377

Thus, condition (iii) makes sense. Let us prove it. Indeed,

[ a0 [ 1k(z,9,8)|dz) duy, 2

T(B) R" .

<o [ lawON [ ey de) du(s,)

A J e+

=c [ la(y,t)du(y,t) < c|B]*V/".
T(B)

Thus,

S Tou@@)da= [ ( [ Kz,9,t)a(y,t)du(s,1)) do
= [a(,t)( [ Kz,,1)dz) du(y, 1) = 0.

This completes the proof of the theorem.

Remark (3.26). The cancellation condition (3.23) is frequently sat-

isfied. Indeed, the kernel of the operator 7, considered in Example (2.2)
satisfies (3.23); so does the kernel of the operator Q:T P; considered in Ex-
ample (2.15), provided that T*(1) = 0 in the sense of BMO (cf. [3]).
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