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LINEARLY FUNDAMENTALLY ORDERED SEMIGROUPS
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B. M. SCHEIN (SARATOYV)

In this paper a function on a set A means a transformation of a subset
of A into A. Superposition gof of two functions on A is defined as a function
on A such that, for every ac A, we have gof(a) = g(f(a)), where the left-
hand side of this equality is meaningful if the right-hand side is.

A function semigroup is a non-empty set of functions on a set A,
closed with respect to the superposition which is then considered as the
semigroup operation. Every function semigroup &% is ordered by the
inclusion relation: f = g means that g is an extension of f.

Let S be a semigroup ordered by an order relation < and P be a map
of S onto a function semigroup &. Then P is an order-isomorphism if
and only if s<teP(s)=P(t) and P(st) = P(t)oP(s) for all s,teS.
The form of the last equality depends on the fact that in the product st
the first factor is s, and in the product P(¢) o P(s) the first factor is P(s).
The ordered semigroup (8, <) is called fundamentally ordered if it is order-
isomorphic with an inclusion-ordered function semigroup. (8, <) is
strictly fundamentally ordered if it is order-isomorphic with an inclusiop-
ordered semigroup of univalent (i.e., one-to-one) functions. ,

The aim of this paper is to give a complete description of all linearly
fundamentally ordered semigroups, all linearly fundamentally orderable
semigroups and all semigroups on which every fundamental order may
be” extended to a linear fundamental order. The analogous problem is
solved for strict fundamental orders.

An order relation < on a semigroup 8§ is stable if

81 < 8 A Sl — 848 < 8,0

(here A is the sign of conjunction, — is the sign of implication). An order
relation < is called weakly steady if

ELKBOAZSUY AU >22Y
for all u, x,2¢8 and all v, ye8'; < is called steady if

PLKBOARKSUD A UY > 2oy
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for all zeS and u, v, z, y 8" such that xv, v, uy, xy ¢S. Here ' denotes S
in the case where S contains an identity, otherwise 8" is S with an identity
adjoined.

The main tool used in the present paper is the following

THEOREM ON FUNDAMENTAL ORDERS(!). An ordered semigroup 18
fundamentally ordered if and only if the order relation on the semigroup
18 stable and weakly steady; it is strictly fundamentally ordered if and only
if the order is stable and steady.

To formulate our main results we need the following constructions:

Construction I. Let I be a non-empty set linearly ordered by an
irreflexive order relation -3 and let (4;);.; and (B;);.; be two families
of non-empty sets indexed by I and such that

1° AnB; #0 > AinA; #0 > BNB; #0 i = j,

2° A;nB; is a one-element set denoted by {a}.

Write C; = 4,UB,, C = | J(C;);.; and define a binary multiplication
in C in the following way:

a; if veCy,yel;,5 34,
oy ={a;, if ¢,yeC;,xd¢A,,
x otherwise.

One can verify that ¢ endowed with this operation is a semigroup,
O, are subsemigroups of C, A = (J(4,);; is the set of all idempotents
of ¢ and A is a subsemigroup of C.

Construction II. Let C be a semigroup described in Construction I.
Let every set 4, be linearly ordered in such a way that a; is the largest
element of A;. If 7 is the largest element of I and B; = {a,}, then the
linear order on 4; may be arbitrary and a; need not be the largest element
of A,. Let B,\ A; be linearly ordered in an arbitrary way. There exists
a uniquely determined linear order < on C such that each element of C;
precedes each element of C; for i 3 j, each element of A; precedes each
element of B;\ 4; for all 7¢I, and restrictions of < on A; and B\ 4;
coincide with the order relations given on these sets for all iel.

Let us show that (O, <) is a fundamentally ordered semigroup. To
prove stability of <, suppose xeC;, y<C;,2¢(;, and v <<y. Then 7 3 j
ori=j.Ifk 3 i,thenwz = a, = yz;if1 = k 3 j, then az¢A; and yz = a,,
hence, zz < yz; if 13 k3 j, then sz =2 < a, = yz; if ¢ 3 k = j, then
vz =< yzeC;; if j 3k, then 22 =<y =yz. Now let ¢ =j = L.
If yed,, then ved; and 2z =z <y = yz; if y¢A,;,, then yz = a; and
xzeA;, whence xz < yz. Therefore, x < y — xz < yz, i.e., < is right regular.

() B. M. lllaitn, IIpedcmasserue ynopsdouennuix noayepynn, MaremarudecKuit
c6opuuk 65 (1964), p. 188 - 197,
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Now if ¥ 3 ¢, then 22 =2 =2y; if ¢ 3 k 3 j, then 20 = a, <2 = 2y;
if ¢ 3 k=4, then 20 = a,<2yeC;; if j 3k, then 20 = a; < a; = 2y.
If ¢« =% and 2e4,, then 20 =2 =2y; if + =k and 2¢A,, then zx = q;
and 2y equals either z or a; — in both cases zx < 2zy. Thus, < is right
and left regular, which means < is stable.

To prove the weak steadiness of <, suppose z2 < v,z << uy and x < u
for u,x, 2¢C and v,yeC'. One can easily see that xv<x, whence 2 <z
and 2y < xy. Suppose z¢(C; and yeC;. If either j 4 or ¢ =j and z¢A4;,
then uy < a; < 2 < uy, a contradiction. It follows that either ¢ 3 j or
1 = j and zeA;. In both cases z = 2y < xy.

Thus (C, <) is a linearly fundamentally ordered semlgroup Now
we are able to formulate the main results:

THEOREM 1. A semigroup can be linearly fundamentally ordered .if
and only if it belongs to the class of semigroups built up in Construction. 1.
These semigroups are precisely those which satisfy the following elementary
universal conditions:

I. wy® = wy;
I1. zyz = xzy;
IIL. 2%y = x®vyier = y?
IV. oy = 2*Ayw = Y2 o = 2:vy = yiva? = y?;
V. 2w =272y =2 >2 =2:vy = yivaoz = yz;
VI. 22y = 2 > yr = yiva?r = v (vy = cAyx = x?).
Here v is the sign of disjunction; conjunction and disjunction tie

up the formulas stronger than implication does: aAf —yvd means
(anB) = (yv9).

THEOREM 2. The class of all linearly fundamentally ordered semigroups
coincides with the class of ordered semigroups built up in Construction II.

COROLLARY. A semigroup S can be linearly fundamentally ordered in
a unique way if and only if S satisfies conditions I—VI, S has at most one
right identity and every left zero subsemigroup and every zero subsemigroup
of 'S have at most two elements.

THEOREM 3. Every fundamental order on a semigroup 8 can be extend-
ed to a linear fundamental order if and only if S has the structure described
in Construction 1 and every left zero subsemigroup of S either is trivial or
consists of right identities of 8. '

THEOREM 4. An ordered semigroup (8, <) is a linearly strictly funda-
mentally ordered semigroup if and only if S = AU B, where A is a linear
semilattice and B 1is either empty or a zero semigroup. Every element of B
acts as identity on A, the order < coincides on A with the natural semilatiice
order, all the elements of A are.smaller than all the elements of B, the zero
of B is the smallest element of B.
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Proofs. Let (8, <) be a linearly fundamentally ordered semigroup.
We shall prove that S satisfies conditions I—VI. If # < oy, then 2y < z-y,
oy < xy-1, ¢ < vy, whence, by the weak steadiness of <, 2y <21 ==
and 2y = . Thus, zy < « for all z, y ¢ S. Suppose now = < yz. Since yz < v,
we obtain s <2, x<y-?2 and zr<y. By the weak steadiness of <,
r<oz< e Thus, r<<yz > 2 = 2.

The just proved two formulas

Yy, TLY2—>x = a2

will be used later on without special reference.

Now ay < zy implies zy = ayy = xy?, xyz = ®(y2)? = xyzyz < v2Y2
< wzy. In the same way, a2y < xyz. Thus, xyz = xzy. For all ¥ and ¥
there is 22 << y? or 2 < 2% It follows w2y = a:vy?lx =y If oy = a2
and yr = y?, then ¥ < y? implies #? = vy = x, y < % implies y2 = yxr =y,
yY2< rAx®< y implies y? = y3 < oy = x® and, in the same way, 2% < y?,
whence x? = y2.

Let 2z = 22y = 2. Then z = 22y = 2%y =22 If v <<z then x <22
and a2z = x. Therefore, %2 = (22)? = zrzaxz = 222x = 2 = z. In the same
way, ¥ < 2z -y = y%. One can easily verify that (zz)? = x2 and (y2)? = yz.
In the same way as above, y<az >y =92, e <yz >x =22 If a2 <<y
and yz < x, then vz = x2? < yz and y2z = y2? < zz. This, vz = yz. Condition
V is verified. ,

Now let 2y = 2% If y> < @, then y*> = y* < #? and ¥ = y?x = yoy =
= yx?y = yx® = yx; if x <yz, then r = 22, if yr < v < y? then vy =«
and yr = yr? < 2 < y*2 = yxy = yr and yr = 2%. Thus, VI is verified.

To prove that (8, <) has the structure described in Construction II,
define a binary relation g on S: (z, y)ep & 2%y = 2% By I, ¢ is reflexive,
2y = 2 and y%z = y? imply =%z = x%yz = w2y?z = 2?yY® = 2%y = 2%,
thus g is transitive, i.e., g is a quasi-order relation. Let ¢ be the symmetric
part of g. Then the quotient set S/e = I is linearly (by III) ordered by
o/e. Let 3 be the irreflexive part of go/c and C; be the e-class corresponding
to iel. Let # <y <z and «,2¢C;. Then 2? = sz < 2%y < 2%z = «* and
x?y = 2%, and, on the other hand, y? = y2y < y22<<¥? and %2z = y2
Therefore, y «C; and C; is convex. Now y < 2 — (¥, 2) €p, a8 we have proved.
It follows that 8 is the ordinal sum of (C;);.r along (I, ), each C; ordered
by the restriction of <. If =,yeC;, then xy = xy? = xy?r = vyx
= 2%¢C;, thus C; is subsemigroup of S. Let z¢C;,2¢C;,7 3 j. Then
o2y = 2? and y%x # y2 If yor = y?, then y2x = yy? = y?, whence yr # y?
and, by VI, zy = . Let A; be the set of all idempotents in C;. If zeA;
and yeC;, then 2y = 2%y =2 =2, if y<a, then y<2? and yr = y.
It follows that y? = yaxyr = ya*y = yry = yx = y. Thus yeAd,;, C; is the
ordinal sum of A4,;, and C,\ 4; ordered by the restrictions of <. If
z,yeO;\ A;, then, by IV, 22 = y%cA, and 2% = 2® = oy? = xy. The
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common value of x2, y2, and xy will be denoted as a;. Let B, = (0;\ A;)U{a,}.
If veB; and yeA,;, then y = yr and 2y = vyr = 2*y = x® = a,;, thus
B,C; = B;B;UB;A; = {a;}; moreover, y < and y = y?< 2? = a,, i.e. q,
is the largest element of A4;. Now let ze¢C;, yeC;,¢ 3 j. Then x?y = 22
and ¥z #y2 If yx = y?, then, by I, y2 = yy? = yyx # y?%, a contra-
diction. By VI, zed; or yr = 2? = a,.

Let xeA;. Then (yx)?x = (yx)? and 2%(vy) = 2%y = x%y = 2%, and
therefore yreC;. Since (yr)? = yayr = yr?y = yo? = yx, yrved,. If 2z A,,
then 2z < y and 2 = 2z < yx. It follows that yx is the largest element of A4,.
If the element a; has been defined, then yr = a,, otherwise let us define
yz = a;. Now a; is defined for all 7¢I except the case when ¢ is the largest
element of I and 4, = C;. This being the case, define a, arbitrarily. We
have proved that (S, <) has the structure described in Construction II
and § has the structure described in Construction I. On the other hand,
every semigroup described in Construction I is linearly fundamentally
orderable (see Construction II) and every semigroup described in Con-
struction II is linearly fundamentally ordered.

To end the proof of theorems 1 and 2 we need to verify that every
semigroup satisfying conditions I—VT is linearly fundamentally orderable.

Suppose 8 satisfies I —VI. Define p and ¢ as above. Then 8§ = (J(C,);.;
and I is linearly ordered by -3. The same argument as above shows that
0, = A,UB;, where B; = (0;\ A;)U{a;}, a; being a special element of
A, defined by axioms I —VI. Now we can see that 8 is a semigroup built
up along the plan exposed in Construction I. Therefore 8 is linearly
fundamentally orderable.

To prove the corollary note that, as follows from Comnstruction II
and Theorem 2, S can be linearly fundamentally ordered in a unique way
if and only if |4;| <2, |B;| <2 and if ¢ is the largest element of I and
C, = A,, then |A;] =1 (here |A| denotes the cardinality of A). These
conditions mean that every left zero subsemigroup and every zero sub-
semigroup (which are included in an A; and a B;, respectively) have at
most two elements; the set of right identities of 8 is just the set 4;, where
¢ is the largest element of I and C; = A,. Thus S contains at most one
right identity.

To prove Theorem 3 note that the identical order relation (r <y & @
= y) is fundamental, and so every semigroup with extendable fundamental
orders can be linearly fundamentally ordered and, by Theorem 1, satis-
fies I—VI.

Now let S be a semigroup satisfying I —VI. By Theorem 1, S has
the structure described in Construction I. Let << be a fundamental order
on 8. By Construction IT and Theorem 2, < may be extended to a linear
fundamental order if and only if for all x¢C;, y¢C;, z < y the following
conditions are satisfied:
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1) 1 #j >1i 3 j;

2) t =jAyed;, >xzed;

"3) ¢ =j,r = a;, and yeA; is possible only if ¢ is the largest element
of I and A4; = C,.

Thus we have to prove conditions 1)—3). If u < uv, then uv < u-v,
wo < uv-1l, and u < wv. By the weak steadiress of <, wo < u-1 = u.
Therefore, u < uv — u = wv.

1) Let ¢ # j. Then 2% < y?, and so #2 = x%x2 < x2y? = x2y. It follows
that x? = 2%y which, means that 3 j.

2) Let ¢ =j and yed;. Then s <2-1,z2<y-y =y, and < y. By
the weak steadiness of <, z <2y = xy? = xy?x = x2y% = vy = 22
Hence, ¥ = 22.

3) Define the following order relation < on §: z <y means either
x =y or ® = a;Ayed; for some iel. Clearly, if v <y, then z, yeC, for
some ¢; therefore zx = 22?2 = 22’y = 20y = 2yx = 2y?xr = 2y% = 2y and
r<y»>2ze<zy. lf o =y, then vz = yz. If v < y, then © = a, and yed;
one can easily verify that xz < yz in this case. Thus, < is stable.

To show < is weakly steady, suppose 2 < v, 2 < uy, v < u. Ilf x = u,
then z2<uy = xy. Let x < u. Then # =a; and ued;. If y =1, then
either 2 = u or z = a;. In both cases z < xv implies av = 2, i.e., 2 < a;.
Therefore, 2 = a;, and 2 < xvy. The same argument holds if uy = u.

Now let uy # w. Then yeC;,j 3 ¢, and uy = a;. Thus z2< a;. It
follows that z = a;, 2y = a;, and z = wy.

Thus, if |4,;] # 1 for some ¢ which is not the largest element of I
or such that C; # A,, then < cannot be extended to a linear fundamental
order. Hence conditions of Theorem 3 are necessary. Sufficiency follows
from the fact that every semigroup satisfying conditions of Theorem 3
satisfies the above-mentioned condition 3).

The structure of semigroups described by Theorem 3 is the following:
let (I, %) be a linearly irreflexively ordered set, and let (B;);.; be a family
of zero semigroups, a, being the zero of B;. Let B = J(B,);c;- Define
the following operation in B: if xeB;, yeB;, then oy = x in the case
¢t 3 j and a2y = a; otherwise. Let L be a left zero semigroup (L may be
empty). Define § = LUB and define the binary operation in S as follows:
the operation acts in L and in B as the operations of semigroups L and B,
if xe L and yeB, then zy = y%, yxr = y. The class of just defined semi-
groups coincides with the class of semigroups on which every fundamental
order may be extended to a linear fundamental order.

To prove Theorem 4, suppose (S, <) is a linearly strictly fundamen-
tally ordered semigroup. Since every strict fundamental order is a funda-
mental order, (8, <) has the structure described in Construction II. In
the proof of Theorems 1 ard 2 we have seen that oy < « for all zS. If 8*
is the dual semigroup relative to § (i.e., zy = 2z in 8" if and only if y» = 2
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in 8), then also (8% <) is a linearly strictly fundamentally ordered semi-
group. Hence xy <y for all »,yeS. If # and y are idempotents, then
also zy is. We obtain xy = (vy)® < yx. In the same way yx < xzy. Thus
xy = yx and the idempotents of § commute. It follows that |4; =1
for all iel. |

Supposer <y = y2.. Thenv < x-1,x < y-1, z < y-y. By the steadiness
of <, # < xy. In the same way, v < yo. Therefore v < z-y, s <y -y, s <y
and, by the steadiness of <, # < ax = % Thus z = z2

If ve(;,yeAd;,and i < j, then 2 <y = y2 Thus 22 = weA;, whence
C; = {a;}.

It follows that 8 has the structure described in Theorem, 4. Evidently,
every semigroup with such a structure is linearly strictly fundamentally
ordered.

Regu par la Rédaction le 8. 9. 1969



