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JOINT SPECTRA AND MULTIPLICATIVE FUNCTIONALS

BY

ANDRZEJ SOLTYSIAK (POZNAN)

In [1] it is proved that if the joint spectrum of an arbitrary n-tuple of
elements in a Banach algebra A4 is non-empty, then A has a .multiplicative
linear functional. A similar theorem for the joint approximate point spectrum
is obtained in [9]. In this paper we introduce and study a wide class of joint
spectra for which a result of this type holds true.

Let A be a complex Banach algebra with the unit 1. We shall write
F(A) for the family of all finite subsets of A. The usual spectrum of an
elements aeA will be denoted by o(a), and its spectral radius by ||a||,. The
symbol rad A will stand for the (Jacobson) radical of A, i.e., the intersection
of the kernels of all irreducible representations of A. We shall denote by Q
the closure (in the usual topology) of the subset Q of C", while dQ will stand
for its boundary. We shall use polynomials over C with “non-commutative
indeterminates” x,, ..., x,. Every such polynomial can be regarded as an
element of the free associative algebra generated by the symbols x,, ..., x,
(cf. [2], [3] or [4).

Now we introduce a class of joint spectra we are going to deal with in
the paper.

DEeriniTION 1. Let 4 be a unital, complex Banach algebra. A function &
which assigns to each set {a,, ..., a,] from .#(4) a compact subset of C"
(possibly empty) is called a generalized joint spectrum on A if it satisfies the
following three conditions:

1)) G(ay,...,a) <[] o(a)

k=1
for every la,,...,a, €#(A). (For \a,,...,a, €F(4) we shall write
G(a,, ..., a,) instead of ¢(lay,.:., a,)).)

(In pé(ay, ..., a,) =d(p(ay, ..., a,))
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for all {a,, ..., a,} € #(A) and an arbitrary m-tuple p = (p,, ..., p,) of poly-
nomials in n indeterminates.

(I11) F(ay,...,a) %

for any pairwise commuting elements a,, ..., g, in A.

Remarks 1. Axiom (I) implies, in particular, that 6(a) < o(a) for every
a in A.

2. A property of the mdp 6 given by axiom (II) is called the one-way
spectral mapping property. We say that ¢ has the spectral mapping property if
it satisfies (II) with the inclusion replaced by the equality.

3. Axiom (III) is introduced to exclude from our considerations the
empty function, i.e., the function which takes only one value the empty set.
It also implies that &(a) # O for each aeA.

4. It is possible to define a generalized joint spectrum not only on the
finite subsets but on all the subsets of the algebra A (cf. [7] or [12]). Since
this more general setting is not necessary for our purpose, we shall confine
ourselves to the joint spectra defined only on the finite subsets of the
algebra A.

5. In [12] Zelazko introduced an axiomatic theory of joint spectra but
he considered only commuting families of elements in 4. It should be noticed
that a generalized joint spectrum is translation invariant, and thus, restricted
to commuting subsets of A4, is a spectroid in the terminology of [12]. On the
other hand, if we take a subspectrum & on A (G is a function defined on
commuting subsets of A4, which satisfies (I), (III), and has the spectral
mapping property; see [12]) and extend it to non-commuting elements
a, ..., a, in A by the formula é(a,, ..., a,) = @, then we get a generalized
joint spectrum on A.

We shall list some examples of joint spectra which satisfy axioms
(D).

ExampLes 1. The left joint spectrum of an n-tuple (a,, ..., a,) of elements
in A, denoted by a,(a,, ..., a,), is defined to be the subset of C" consisting of
those (4,,...,4,) for which the system (a,—4,,...,a,—4,) generates a
proper left ideal of 4. (Here, a;—4; stands for a;—4;1.)

2. The right joint spectrum o,(a,, ..., a,) is defined in a similar manner.
3. The joint spectrum, called sometimes Harte's spectrum, is defined to be

the union of the left. and the right joint spectra:
o(ay, ..., a,) =0lay,...,a)vo,(ay,...,a,.

In [2] and [3] Harte proved that o,, 6,, and ¢ satisfy properties (I)(I1I).

4. The left approximate point spectrum of an n-tuple (a,...,a,) of
elements in A, denoted by 7,(a,, ..., a,), is defined to be the subset of C"
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consisting of those (4,,..., 4,) for which there exists a sequence () of
elements in A4 such that |ju| =1 for all k and

lim|l(a;—A)ull =0 for j=1,...,n.
k

5. A definition of the right approximate point spectrum t.(a,, ..., a,) is
similar.

6. The joint approximate point spectrum t(a,, ..., a,) is the union of the
left and the right approximate point spectra:

T(ay, ..., @) =710y, ..., a)ur.(a,, ..., a,).

In [2] Harte proved that these approximate point spectra are compact
subsets of C" and satisfy conditions (I) and (II). Zelazko showed that they are
non-empty for n-tuples consisting of pairwise commuting elements (see [11]
and also [7], p. 134).

7. The bicommutant spectrum ¢’ (a,, ..., a,) is defined to be the Harte
spectrum of the n-tuple (a,, ..., a,) in its bicommutant {a,, ..., a,}".

In [4] Harte proved that the bicommutant spectrum satisfies axioms (I)-
(ITI) of Definition 1.

Now we shall prove the previously mentioned result. We start with the
following lemma which seems to be interesting in itself.

LEMMA 1. Let G be a generalized joint spectrum on a Banach algebra A.
If a function @: A = C has the property

(¢(a), p(b) € (a, b)

for every a and b in A, then it is linear and muliiplicative.

Proof. We need the Kowalski-Stodkowski theorem (see [6]) which
reads as follows: If a function ¢: 4 — C satisfies the following two condi-
tions:

90 =0 and ¢(a—9¢(b)es(a—b)

for arbitrary a and b in a Banach algebra A, then it is a multiplicative
(linear) functional on A.

Thus we see- that it is enough to show that the function ¢ satisfies the
assumptions of this theorem. By (I) we get

(2(0), ©(0) €6 (0, 0) = a(0) xa(0) = {(0, 0)},
which implies ¢(0) = 0. Further, by (II) and (I) we obtain
@(a)—op(b)ed(a—b) ca(a—D)

for arbitrary a and b in A, and we are done.
PrOPOSITION 1. Let 6 be a generalized joint spectrum on a Banach
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algebra A. If
Gy, ...,a)#@ for every la,,...,a, €F(A),
then there exists a multiplicative functional ¢ on A. Moreover,

((p(al)s veey (p(an))ea(als sy an)

for an arbitrary \a,, ..., a,} € F(A).
The author is indebted to Dr. K. Jarosz who supplied the following
elegant and short proof.

Proof. We assume that ¢ (a,, ..., a,) is always non-empty for finitely
many elements a,, ..., a, in A. Let

K =[] (@.

aecA

Then by the Tikhonov theorem it is a compact set (with respect to the
product topology). Let us put

@(ay, ..., @) = {(Adaca €K: (o, -+ 4 ) EG(ay, ..., ay)},

where {a,, ..., a,} € #(A). This set is non-empty and compact, and moreover
by (II) we get

w(ay,...,a, by, ....,b) cw(ay,....,a)nw(b,,..., b,

for arbitrary la,,...,a,} and lb,,..., b, in F(4). Thus the family
\w(ay, ..., a,)}, where la,, ..., a,)} runs over all elements of #(A), has the
finite intersection property. Therefore, its intersection is non-empty. If (4,),.4
belongs to this intersection, then the function ¢: A = C defined by the
formula ¢ (a) = 4, is, in view of Lemma 1, a multiplicative functional on A.
Moreover, it is obvious that

((p(al)’ A ] (p(an))ea(al’ ceey an)

for each {a,, ..., a,} e #(A).

Remark. The above result is a generalization of the main theorems in
[1] and [9].

We shall write M(A) for the family of all multiplicative functionals of

the algebra 4 while M(5; 4) will denote the set of all such functionals ¢ for
which

(0(@). ..., (@) ed(ay, ..., a)

for every la,, ..., a,} €.7 (A). Obviously, IM(6; A) = M(A) and both of them
can be empty. _
For the examples of afore-named generalized joint spectra the following
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equalities hold true:
M(a,; A) = M(a,; A) = M(a; A) = M(c"; A) = M(A).
We have
M(z;; A) = {p e M(A): kerp consists of joint left
topological divisors of zero}.

(A subset S of a Banach algebra A consists of joint left topological divisors of

zero if for every finite subset {x,, ..., x,} of S there exists a sequence (z,) of

elements in 4 such that ||z]| =1 for every k and lim||x;z|| =0 for j
k

=1,...,n; cf. [9])) Similarly,
M(z,; A) = {¢ e M(A): ker ¢ consists of joint right
topological divisors of zero}.
We have

WM(z;; A)u W(z,; A) = M(t; A).

It is easy to give an example of a Banach algebra A for which
W(z; A) # M(A) (see [9]).

Now we shall recall a notion of the so-called “projection property”
which plays an important role in the investigation of joint spectra. For each
increasing sequence of indices

1€j; <j,<...<jm<n

let us denote by P; _; the projection from C" onto C™ defined by the
formula

le...jm(;'l’ teey A'n) = (ljl’ ceey A]m)'

If

le_“jm&'(al, ceey a") = &(ajl, Y ajm)

for arbitrary 1 <j; <j, <...<jp,<n and all a4, ..., a, in A4, then we say

that the generalized joint spectrum G has the projection property on the

algebra A. '
We shall prove the following

ProposITION 2. A generalized joint spectrum G on a Banach algebra A
has the projection property if and only if

(% (s, ..., a) = (@ (@), ..., 0(a)): @ eM@; 4)}
for every lay, ..., a,} e F(A).
Proof. We assume that ¢ has the projection property. Then, obviously,

11 - Colloquium Mathematicum 56.2
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G(ay,...,a)#@ for every la,,..., a,) eF(A).

Let an arbitrary n-tuple (a,, ..., a,) of elements in A be fixed from now on.
Taking (44, ..., A) €d(ay, ..., a,), we have to show the existence of a multi-
plicative functional ¢ € M(d; A) such that ¢(a) =4, for j=1, ..., n. Let, as
before, '

K=]]o).

acA
For an arbitrary m-tuple (b,, ..., b,) of elements in 4 we write
6(b1a IERE) bm) = :(#a)aeA €K: #aj = Aj

forj= l’ cees B and (#bl’ R ] #b,,,)eé"(bl, ceny bm)}'

The projection property of & implies that é(b,, ..., b,) is always non-empty.
It is obvious that it is compact and, moreover,

0by,...obmscy, ..., c)) ©6(by, ..., bp) N O(cy, ..., Cp)

for arbitrary {b,, ..., b,} and {c,, ..., c,}. Thus the family {6(b,, ..., by},
where !b,,..., b, runs over #(A), has the finite iutersection property.
Taking a point (u,),., from the intersection of this family we get the function
o: A—-C, ¢(a) =y, which, in. view of Lemma 1, is a multiplicative
functional on A and has the required property.

It is evident that if for every finite set la,, ..., a,} we have (s), then &
has the projection property on the algebra A.

As an immediate consequence of Proposition 2 we get the following

CoROLLARY 1. A generalized joint spectrum & has the projection property
on a Banach algebra A if and only if it has the spectral mapping property on
this algebra.

Remark. In [5] (see also [7], p. 146) it is shown that a semispectrum &
(6 is a function defined on commuting subsets of A which has the projection
property, is always non-empty, and &(a;+4,,...,a,+4) =4y, ..., 4,)
+d(ay, ..., a,); see [12]) satisfies the one-way spectral mapping property if
and only if it has the spectral mapping property. Hence Corollary 1 can be
regarded as a counterpart of this result in the non-commutative case.

Let us introduce one more axiom:
(Iv) max {|A|: A€d(a)} =|lall;, for all aeA.

CoROLLARY 2. If a generalized joint spectrum & satisfies (IV) and has the
projection property on a Banach algebra A, then

(ker p: @ €eM(G; A)} =rad 4.

In particular, the algebra A/rad A is commutative.
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Proof. Let us take arbitrary
ae() kkerp: peM(d; A)} and beA.
Then
|lab|l; = max {|A|: A€d(ab)} = max {|p(ab)l: ¢ e M(G; A))
= max o (a) ¢ (b)l: ¢ eM(G; A)} =0,
and therefore aerad A. Thus
Nikerp: ¢ eM(G; A)} crad A.

The converse inclusion is obvious by the definition of the radical.

Remarks. 1. All the examples of generalized joint spectra afore-cited
satisfy axiom (IV) since for such a spectrum & we have do(a) < 6(a) for all
acA.

2. The commutativity of the algebra modulo its radical suffices for the
joint spectra o,, 0,, and o to have the projection property (see [1]) whereas
this is not a sufficient condition for the approximate point spectra 1,, t,,
and 7 to have this property (see [9]). We shall also show that the bicommu-
tant spectrum o¢” need not have the projection property if A/rad A is
commutative. To see this we shall take the modification of the famous Taylor
example (see [10], and also [7]) given by Harte in [4], pp. 300-302. Let

4={zeC: |z| <1},
U=34x34, W=4x4, and V=U\W.

Symbols % (V), ¢V (V), ./ (V) will denote the algebras of all continuous
functions on V, all continuously differentiable functions on V¥, and all continu-
ous functions on ¥ which are analytic in its interior, respectively. Let 4 be
the algebra of all (bounded and linear) operators on X = 4 (V)@®%" (V) of
the form

(f, 9) —~(Wf+Kg, hg),

where h e 4" (V) and K is an arbitrary operator from %'V (V) into % (V). It is
convenient to represent elements of A in the matrix form

L, K
0o L,/

where L, denotes the multiplication operator by the function h. Then it is
easy to see that the radical of A consists of the operators (f, g) —(Kg, 0),
and so the algebra A is commutative modulo its radical. Moreover, multipli-
cative functionals on A are given by the evaluation of the function h at
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points of V, ie., ¢, eM(A) if and only if it takes the form

¢,([L0" ,ﬂ)=h(z) zeV).

Now we take operators a; given by a;(f,g9)=(z;f,2;9), j=1,2, and z
=(z,, z,). Then reasoning as in [4] we get the following inclusions for the
bicommutant of {a,, a,} in the algebra A:

L, O .
D, = {[ 0" Lh]: he.sz/(V)} < {a,, a5}

<D= {I:I(;h fh] hed (V), KL, =L, K for j=1, 2}-

The algebras D, and D, have more multiplicative functionals than A since
every function analytic in the interior of V' extends analytically to U. Thus
we have

M(Dy) = M(D,) = M({a,, a,}") = {o,: zeU},
which implies that
0"(ay, a)) =U # V = {(¢(a)), ¢(ar)): ¢ eBYA)}.

Hence, in view of Proposition 2, the bicommutant spectrum does not have
the projection property on A.

Now we shall define a partial order in the set X (A4) of all generalized
joint spectra on a Banach algebra 4 and we shall prove that every Banach
algebra has the largest generalized joint spectrum. We shall also show that
there exist minimal generalized joint spectra.

~ DerintTioN 2. For two generalized joint spectra 6, and &, defined on a
Banach algebra A we shall write 7, < 7, if

G1(ay, ..., a) ©G,(ay, ...,a) for each {a,, ..., a,} € F(4).

This is a partial order in the set X (A).

We need the following lemma (cf. [12]):

LemMMa 2. If p is a continuous map from C" into C™ and R is a relatively
compact subset of C", then p() = p(%).

The proof of this lemma is straightforward, and therefore will be omitted
here.

ProPOSITION 3. There exists the largest generalized joint spectrum o,
on A.

Proof. We shall _pr’oceed exactly in the same way as in the proof of
Theorem 6.3 in [12]). Namely, for a fixed {a,, ..., a,} from #(A4) let us
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define

Oras (@1, .., 8) = U {8(ay, .., a): GEXL(A)].

It is clear that o_,, satisfies axioms (I) and (III) (and also (IV)). To see that
axiom (II) is also satisfied let us take an arbitrary system p = (py, ..., p,) Of
polynomials in n variables and apply Lemma 2. Then we get

PO (@, ..., a) = p(U{d(ay, ..., a,): G€Z(A)})
=p(U{G(ay, ..., a): GeZ(A)})
=U{pd(a,, ..., a,): dgeZ(a)}
cU{e(pay, ..., a)): FEZ(A)} = 6, (p(ay, ., a)).

ProrPosITION .4. X (A) contains minimal elements.
Proof. If {,} is a totally ordered subfamily of Z(4), then, evidently,

6:0 = n.&'a
satisfies axioms (I) and (II), and the finite intersection property implies that
G, has also property (III). Hence G, is a generalized joint spectrum on A
such that 6, <4, for all a. By the Kuratowski-Zorn lemma we obtain
minimal elements in X(A).

Remarks. 1. If an algebra A is commutative and ¢ is a fixed multipli-
cative functional on A4, then the joint spectrum G, defined by the formula

Gplas, .. a) = {(0(ay, ..., 9(a)}
is a minimal generalized joint spectrum on this algebra.

2. If a Banach algebra A4 has a single point subspectrum & (i.e., the value
of ¢ always consists of a single point; see [8]), then the trivial extension of &
to #(A) (é(ay, ..., a) = O for non-commuting elements a,, ..., a, in 4) is a
minimal generalized joint spectrum on A. For example, such a situation
occurs when A = B(J) or A = B(J@®J), where J is the classical James space
(see [8]).

3. In an arbitrary Banach algebra A4 the following relations hold true:

” n” "

S0, <00, 1,X0,<0<X0’, 107"

Moreover, in the axiomatic theory of Zelazko (see [12]) every joint spectrum
(even subspectrum) must be contained in the bicommutant spectrum (which is
neither a joint spectrum nor a subspectrum in this theory). These facts may
suggest that the bicommutant spectrum is a good candidate for the largest
generalized joint spectrum. Hence we ask the following question:
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Do the largest generalized joint spectrum and the bicommutant spec-
trum coincide? (P 1360)(})

If the answer to this question is negative we may still ask the following:

Does there exist a simple characterization of the largest generalized joint
spectrum?

The author is indebted to Prof. W. Zelazko for pointing out an error in
the first version of this paper and for many valuable remarks which made the
present version much better.
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