FASC. 2

A NOTE ON TOPOLOGICAL m-SPACES

BY

G. J. MICHAELIDES (TAMPA, FLORIDA)

The purpose of this paper is to characterize 1-dimensional Peano continua admitting a mean. It is also shown that compact connected absolute neighborhood retracts (ANR's) that are imbeddable in \mathbb{R}^3 admit a mean if and only if they are absolute retracts (AR's) whereas locally arcwise connected and semi-locally simply connected continua with a mean have finite fundamental groups.

A space X is said to admit an n-mean if there is a map (continuous function) $\mu: X^n \to X$, where $X^n = X \times ... \times X$ is the n-fold Cartesian product of X, satisfying the conditions

- 1. $\mu(x, ..., x) = x$ and
- 2. $\mu(x_1, x_2, \ldots, x_n) = \mu(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})$ for every permutation σ of the set $\{1, 2, \ldots, n\}$.

Spaces with a mean are also referred to as *m*-spaces. Since, for n = 1, every space becomes an *m*-space, μ being the identity, we assume $n \ge 2$.

Definition. A map $f: X \to Y$ is an r-map if there is a map $g: Y \to X$ such that $f \circ g: Y \to Y$ is the identity on Y, i.e. g is a right inverse of f.

PROPOSITION 1. If $f: X \to Y$ is an r-map and X admits a mean, then Y admits a mean.

Proof. Let μ be an *n*-mean on X. The map

$$f \circ \mu \circ g^n \colon Y^n \to Y$$
, where $g^n(y_1, \ldots, y_n) = (g(y_1), \ldots, g(y_n))$

is easily shown to be an n-mean on Y.

COROLLARY 2. If Y is a retract of X and X is an m-space, then Y is an m-space.

Proof. Let $r: X \to Y$ be a retraction. The identity map $i: Y \to Y$ is a right inverse of r, therefore Y admits a mean by Proposition 1.

Definition. A continuum (compact, connected) X is said to be unicoherent if, for any two subcontinua A and B such that $X = A \cup B$, $A \cap B$ is a continuum.

THEOREM 3. For a 1-dimensional Peano continuum X the following are equivalent:

- (1) X admits a mean,
- (2) X is unicoherent,
- (3) X is a dendrite.

Proof. (1) \Rightarrow (2). Suppose X admits a mean and X is not unicoherent. By a theorem of Borsuk ([3], Théorème 30, p. 184) X retracts to a simple closed curve contained in X. But a simple closed curve cannot admit a mean [1]. By Corollary 2, X cannot admit a mean. This contradiction establishes the implication.

- $(2) \Rightarrow (3)$. Since X is 1-dimensional and unicoherent, it cannot contain a simple closed curve. Thus X is a locally connected continuum with only degenerate cyclic elements, therefore X is a dendrite ([12], 1.2 (i), p. 89).
- $(3) \Rightarrow (1)$. One characterization of a dendrite X is that between any two points there is a unique arc ([12], 1.2 (ii), p. 89). If x and y are any two points of X and $\mu(x, y)$ is defined to be the unique mid-point of the arc \widehat{xy} , then, clearly, μ is a mean on X.

Remark. It follows from Theorem 3 that a 1-dimensional Peano continuum admits a mean if and only if it is unicoherent.

In fact, for continua that admit a mean, unicoherence is always implied ([10], Corollary 3).

Before proving the next theorem we list some pertinent facts:

FACT 1. If X is a compact subset of a Euclidean space \mathbb{R}^n and X admits a mean, then $\mathbb{R}^n - X$ is connected ([10], Corollary 2).

FACT 2. All singular homology and cohomology groups of m-spaces cannot contain Z (the group of integers) as a summand ([4], Section 5, p. 337).

FACT 3. The fundamental group of an m-space is Abelian ([4], Satz 5, p. 335) and Z cannot occur as a summand.

THEOREM 4. A compact connected ANR which is imbeddable in \mathbb{R}^3 admits a mean if and only if it is an AR.

Proof. Let X be a compact connected ANR subset of R^3 and let X admit a mean. To show that X is an AR it will suffice to show that X is simply connected and that all its Čech homology groups over the coefficient group Z of integers are trivial by [2], Theorem 10.8, p. 124. Since for ANR's the Čech and singular homology (cohomology) groups are equivalent [8], the homology and cohomology groups employed below are singular.

We first note that since X is an ANR, X is the r-image of a polyhedron ([2], Theorem 10.1, p. 122) and as such it has finitely generated

homology and cohomology groups. From dimension consideration $(\dim X \leq 3)$, $H^k(X) = 0$ for $k \geq 3$ ([7], Theorem VIII.4, p. 152). Since X admits a mean, X is unicoherent by the Remark above, and $H^1(X) = 0$ ([8], Theorem 2).

By Alexander duality ([11], Theorem 16, p. 296),

$$\tilde{H}_0(R^3-X)=H^2(X),$$

where $\tilde{H}_0(R^3-X)$ is the reduced group in dimension zero. It follows from Fact 1 that $\tilde{H}_0(R^3-X)=0$ since R^3-X is connected, and hence $H^2(X)=0$. Since, for spaces with finitely generated homology groups $H_q(X)$ for all q, the torsion submodule of $H^q(X)$ is equal the torsion submodule of $H_{q-1}(X)$ ([11], Corollary 4, p. 244), we conclude, by Fact 2, that $H_q(X)=0$ for $q\geqslant 1$. Finally, by Fact 3, $\pi(X)\approx H_1(X)=0$. Thus X is simply connected with all its homology groups zero and, therefore, X is an AR.

For the converse, let X be a compact AR subset of R^3 and let $\Delta_X = \{(x, x) : x \in X\}$. Denote by $\mathrm{SP}^2 X$ the quotient space $X \times X/\sim$, where \sim is the equivalence relation defined by $(x, y) \sim (y, x)$ for $x, y \in X$. If $d: \Delta_X \to X$ and $\bar{i}: \Delta_X \to \mathrm{SP}^2 X$ are defined by d(x, x) = x and $\bar{i}(x, x) = \overline{(x, x)}$, respectively, then the following diagram commutes:

Here i is the inclusion map, ν the quotient map, and $m\bar{i}=d$, i.e. m is defined on $\bar{i}(\Delta_X)$ which is a closed subset of SP^2X . The quotient space SP^2X is metrizable and, since X is an AR, m can be extended over SP^2X ([2], Theorem 4.2, p. 87). The composition $m \circ \nu$ is a 2-mean on X since

- 1. $mv(x, x) = m\overline{(x, x)} = x$, and
- 2. $m\nu(x, y) = m\nu(y, x)$ in view of $\nu(x, y) = \nu(y, x)$.

Definition. A space X is said to be semi-locally simply connected if every point $x \in X$ is contained in a neighborhood U such that $\pi(U, x) \to \pi(X, x)$ is the trivial homomorphism.

THEOREM 5. Let X be a locally arcwise connected and semi-locally simply connected continuum that admits a mean. Then $\pi(X, x_0)$ is finite.

Proof. It is known [9] that if a space is compact, connected, locally arcwise connected and semi-locally simply connected, then its fundamental group is finitely generated. For such a space X, $\pi(X, x_0)$ is finitely gen-

erated Abelian group by Fact 3, since X is an m-space. By the decomposition theorem for finitely generated Abelian groups and by Fact 3, $\pi(X, x_0)$ is the direct sum of finitely many cyclic groups none of which is Z. Therefore, $\pi(X, x_0)$ is finite.

COROLLARY 6. Let X be as in Theorem 5 and let k be the order of $\pi(X, x_0)$. If n is a positive integer such that $(k, n) \neq 1$, i.e. k and n are relatively prime, then X does not admit an n-mean.

Proof. By a homomorphic n-mean on an Abelian group G we understand a function $m: G^n \to G$ such that

- 1. $m(g, g, \ldots, g) = g, g \in G$,
- 2. $m(g_1, g_2, ..., g_n) = m(g_{\sigma(1)}, ..., g_{\sigma(n)})$, and
- 3. $m(g_1+g_1',\ldots,g_n+g_n')=m(g_1,\ldots,g_n)+m(g_1',\ldots,g_n').$

If X admits an n-mean, then $\pi(X, x_0)$ admits a homomorphic n-mean and the homomorphism $a \mapsto na$, $a \in \pi(X, x_0)$, is an automorphism ([4], Satz 3). By the hypothesis, $(k, n) = d \neq 1$. If p is a prime divisor of d, then p is also a prime divisor of both k and n, and $n = n_0 p$ for some positive integer n_0 . By Cauchy's theorem ([6], Theorem 2.2.5, p. 74), there exists an element $\beta \in \pi(X, x_0)$ such that $\beta \neq e$ and $p\beta = e$. Thus $\beta \mapsto n\beta = n_0(p\beta) = n_0 e = e$, and hence the homomorphism $a \mapsto na$ is not an automorphism since its kernel contains $\beta \neq e$. Therefore, $\pi(X, x_0)$ is not an m-group (a group is an m-group if it admits a homomorphic n-mean) and, consequently, X does not admit an m-mean.

QUESTIONS. 1. Is a locally connected continuum in \mathbb{R}^3 that admits a mean contractible? (P 924)

2. If a space X, as in Corollary 6, admits a mean, does it imply that $\pi(X, x) = 0$? (P 925)

REFERENCES

- [1] G. Aumann, Über Räume mit Mittelbildungen, Mathematische Annalen 119 (1943), p. 210-215.
- [2] K. Borsuk, Theory of retracts, Warszawa 1967.
- [3] Quelques théorèmes sur les ensembles unicoherents, Fundamenta Mathematicae 17 (1931), p. 171-209.
- [4] B. Eckmann, Räume mit Mittelbildungen, Commentarii Mathematici Helvetici 28 (1954), p. 329-340.
- [5] T. Ganea and P. Hilton, Generalized means, Studies in Mathematical Analysis and Related Topics, Stanford University Press, 1962.
- [6] I. N. Hernstein, Topics in algebra, Blaisdell Publ. Co., 1964.
- [7] W. Hurewicz and H. Wallman, Dimension theory, Princeton 1948.
- [8] S. Mardešić, Equivalence of singular and Čech homology for ANR's. Application to unicoherence, Fundamenta Mathematicae 46 (1958), p. 29-45.

- [9] W. S. Massey, Algebraic topology. An introduction, Harcourt, Brace and World, Inc., 1967.
- [10] K. Sigmon, Acyclicity of compact means, The Michigan Mathematical Journal 16 (1969), p. 111-115.
- [11] E. H. Spanier, Algebraic topology, McGraw Hill, 1966.
- [12] G. T. Whyburn, Analytic topology, American Mathematical Society Colloquium Publications 28 (1942).

UNIVERSITY OF SOUTH FLORIDA DEPARTMENT OF MATHEMATICS TAMPA, FLORIDA

Regu par la Rédaction le 10. 8. 1973