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It is a well-known fact that the F. and M. Riesz theorem and the Rudin-
Carleson theorem are equivalent (cf. [2] and [5]). In this note we shall give
another condition which is equivalent to these two results. We shall also give
a proof of the F. and M. Riesz theorem in the logmodular algebra setting.
For an elegant proof of this classical result for the circle, we refer to R. Doss’
paper [4].

Let G be a compact abelian group with dual I, and let mg be the
normalized Haar measure on G [9]. The Fourier transform of a measure

p € M(G) is defined by
a(r)= [Fdu (ver).
G

A subset E of I' is called a Riesz set if Mg(G) C My(G), where M,(G) =
{peM(G): p €« mg} and

Meg(G)={peM(G):i=00ff E}.

Now let F' C I', and let Cr(G) denote the closed linear span of F in C(G).
We shall call F a CR-set if F satisfies the following condition: whenever
K is a compact subset of G with mg(K) =0 and ¢: G — (0,1] is a lower-
semicontinuous function with ¢ = 1 on K, then each f € C(K) extends
to a function f € Cp(G) in such a way that |f| < ||f]lxk$ on G, where
|| fllx denotes the uniform norm of f over K.

THEOREM 1. Let G be a compact abelian group with dual I', and let E
be a subset of I'. Then the following assertions are equivalent:

(a) E is a Riesz set.

(b) F=T\FE is a CR-set.

(c) There ezists a finite positive constant B with the following property:
given a compact subset K of G of Haar measure zero, f € C(K) and ¢ > 0,
there ezists g € Cr(G) such that

lg - fllx <& and |igllc < Bllflix-
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The equivalence of (a) and (b) is essentially due to E. Bishop [2]; see
also [5]. That (b) implies (c) is banal. To prove that (c) implies (a), we
need a lemma.

LEMMA 2. Given v € M(G), € > 0, and a finite set Fy C I, there ezist
C1,...,¢n € C and nonempty open sets Uy, ...,U, C G such that

(i) lea + ... + |ea| < |lv]], and
(i) [2(7)- k=1 ck7¥(zk)| < € forall vy € Fy and allz, € Uy (1 < k < n).

If v is a probability measure, such ¢, can be chosen to satisfy
(iii) cx > 0 Vk, and ey + ...+ cp = 1. “

Proof. Let V={z€G:|y(z)-1 <€e/2Vy € Fy }, s0 that V is a
neighborhood of 0 in G. Since G is compact, we can find finitely many
elements ¥;,...,yn of G such that G = |Ji_, Uk, where Uy = yx + V
(1 £ k < n). Notice that z,y € Ui for some k implies that |y(z) —v(y)| < €
for all v € Fq.

Now let Ex = Ui \ (U;‘;l1 U;) and ¢, = v(Ej) for 1 < k < n. Then (i) is
obvious. If ¥ € Fy and z, € U, for all k, then

51 - Y eten)| < 30| [ (T-T@bdy| < 3 elwl(Er) = ellv]l
k=1 k=1 E; k=1

which completes the proof of our lemma.

Proof that (c) implies (a). Without loss of generality, assume
that F contains 1 € I". Given g € Mg(G), let u = pg + p, denote the
Lebesgue decomposition of u with respect to mg. We must prove that
ps = 0. Notice that

(1) [ Fdu, =~ [Fdua VfeCr(G).
Given € > 0, choose a finite set Fy C I" so that
() | [T dua| <clifllo

for all f € C(G) with f = 0 on Fp (cf. [3]). We apply Lemma 2 to v = mg
to obtain ¢;,...,¢, > 0 and nonempty open subsets Uy,...,U, of G such
that

(3) ci+...+¢, =1 and
(4) |ch7(zk)| <e/(B-|R|) VreR\{1} & =zi€U,
k=1

where |Fp| denotes the cardinality of Fp.
Now we claim that there exist zx € Uy (1 < k < n) such that

(5) 8o ¥pts L 6z 4y Vk # 5,
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where 4§, denotes the unit point mass at z. Indeed, pick any z, € U,;.
Suppose that z, € Uy,...,z,, € U,, have been chosen for some m < n.
Since p, is a singular measure, it is easy to find 2,41 € Un41 so that (5)
holds for all K < m and j = m + 1. This completes our induction, thereby
confirming our claim.

Now define v = Y }_, ckbz, * ps. Then v is singular and ||v|| = ||us]|
by (3) and (5). It follows from (c) and the regularity of v that there exists
g € Cr(G) such that

(6) gl <B and  [gdv> ||u,ll-e.
Define h € C(G) by setting

() h(y) =) cxg(y+z) VYy€eG.
k=1

Then ||k|jc < B by (3) and (6), and
®)  [Rdp, =) e [Ty+ar)dp.(v)= [Fdv> ||ul-¢
k=1 .

by (7), the definition of v and (6). Moreover, we have
(9) heCr(G) and |h(y)|<¢e/lFo| V7€ F.
In fact, v € I'" implies

) =Y e [Twew+zi)dy= {3 er(zn)} - 3(1)
k=1 k=1

by (7). Since g € Cr(G) and 1 € E, it follows that h € Cr(G) and h(1) = 0.
If 1 # v € Fo, then |h(y)| < €]§(7)I/(B|Fol) < €/|Fo| by (4) and (6). All
these together confirm (9).

Finally, set f = h— Y { ()7 :7 € Fo }, so that f = 0 on Fy. Moreover,
f € Cr(G) and || f—hl|g < € by (9). In particular, || f|lc < ||k||c+€ < B+e¢.
Accordingly

lisll =€ < [ R, by (8)
<| JFdu.|+11f - bllaludl
<| [ Fdpa| +ellull by (1)
Se(B+e)+elul by (2).

Since € > 0 was arbitrary, we conclude that u, = 0, as desired.

Remark. We feel that all the conditions in Theorem 1 are equivalent
to the following one:
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(d) Cr(G) | K = C(K) V compact K C G with mg(K) = 0.

If (d) is the case and if K is as above, then an easy application of the closed
graph theorem yields a finite constant Bx such that each f € C(K) has an
extension g € Cr(G) such that |||l < Bk||f||x. Thus the problem is as
to whether we can choose such Bg independently of K.

Now let X be a compact Hausdorff space, and let A be a logmodular
algebra on X. The latter means that A is a uniformly closed subalgebra of
C(X) such that A contains the constants and such that {log|f|: f€ A~}
is uniformly dense in Cr(X), where A~! denotes the set of all invertible
elements of the Banach algebra A (cf. [7], [8]). We choose and fix any
probability measure m € M(X) which is multiplicative on A. Thus

Ao = {fEA: ffdm=0}
is a closed maximal ideal in A.

THEOREM 3. Given a compact subset K of X with m(K) =0 and e > 0,
there exists g € A such that |g| <1 on X, |g| <€ on K, and

flg—lldm<£.

Proof (cf. Lemma 3 of [10]). We may assume that € < 1. Since A is
logmodular and m(K) = 0, the regularity of m ensures that there exists
g € A7! such that |g| < 1 on X, |g| <€ on K, and

(10) [ loglgl dm > log(1 — 271¢?).

Notice that m is an Arens-Singer measure ([1], [8]); hence

(11) f log |g| dm = log|fgdm|.

Replacing g by cg for some complex number ¢ of absolute value one, we may
assume that [ gdm > 0. Then [gdm > 1-2"1¢2 by (10) and (11), and so

[lg=12dm= [(lg]* - 2Reg+1)dm<1-2(1-271e?)+1=¢.

Since m is a probability measure, it follows from Schwarz’ inequality that
llg =1l < llg - 1|2 < &.

Remark. If A is a Dirichlet algebra, then the usage of (11) in the
above proof can be avoided as follows. Pick f € A such that Ref > 1 on X,
Ref > 1/e on K, and [ fdm < (1 —-271¢?)"1. If R > 0 is large enough,
then f~! = R~'{1 — (1 — R~!f)}~! admits a uniformly convergent power
series expansion in 1~ R™1f,s0 g = f~! € A. It is easy to check that g has
the desired properties.
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COROLLARY 4. Let u, € M(X) be singular with respect to m. Then there
ezists a sequence (h,) in Ay such that ||h.||x < 2 for all n,

limh, =1 p,-a.e. and limh, =0 m-a.c.
Proof. Choose compact subsets Ky C K7 C ...of X so that m(K,) =0
and |p,|(Kn) > ||us|| = 1/n for all n. By Theorem 3, there exist g, € A

such that |g,] < 1 on X, |gs] < 1/n on K, and [ |g, — 1|dm < 1/n%. It
will suffice to set hy, = gn — [ gn dm for each n.

COROLLARY 5 (cf. [6]). Suppose u € Ay, i.e., u is a measure in M(X)
which annthilates Ag. Then the singular part of p annihilates A.

Proof. Let p = p, + p, be the Lebesgue decomposition of p with
respect to m. Choose (h,) C Ag as in Corollary 4. If f € A, then fh, € Ay,
S0

(12) [ fhadps=~ [ fhndpa  VneN
by hypothesis. Apply the Lebesgue convergence theorem to obtain
ffdﬂ's =0.

COROLLARY 6. Suppose that C(X) contains a uniformly dense subset D
such that

(%) Vfe D, 3peN such that fh?P € Ay Vh € Ap.
Then p € Ay implies p < m.

Proof. Let u € Ag and f € D be given. Choose p € N as in (*). Then
(12) holds with h, replaced by k%, so [ fdu, = 0. Since D is uniformly
dense in C(X), we conclude that u, = 0.

CoROLLARY 7 (The F. and M. Riesz Theorem). If p € M(T) and
f(n) < 0 for all negative integers n, then u is absolutely continuous.

Proof. In Corollary 6, choose A = {f € C(T): f(n) = 0foralln < 0},
m = my, and D = the set of all trigonometric polynomials.
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