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Introduction. By means of a measurc defined on the maximal ideal
space of a Banach algebra X, the author is able to define a new metric
on X. Denoting this metric by d, the resultant metric space X, is investi-
gated from two different points of view. In the first three sections the
interplay between the algebraic structure of X and the metric topology
is studied. It is shown, for example, that X, is a bounded topological
ring. In addition, the topological properties of certain algebraic subsets
(e.g., the units, the idempotents, the maximal ideals) are contrasted in
the Banach algebra topology and the metric topology. For instance,
while the units are always open in the Banach algebra topology, they
are open in X, iff d is trivial. Furthermore, we present an example in
which there are no maximal ideals which are closed in X,.

Questions relating to completeness and convergence are dealt with
in sections 4 and 5. We show that if the maximal ideal space is denumber-
able, X, is incomplete. A strengthening of the concept of convergence
in measure, called convergence strongly in measure, is defined on a general
measure space. It is then shown that a sequence converges in X, iff the
corresponding sequence of Gelfand functions converges strongly in meas-
ure. In the sixth and final section it is shown that X, is locally compact
iff d is trivial. |

1. Preliminairies. Let X = (X, | ||) be a complex commutative
semi-simple Banach algebra with identity ¢ such that |l¢|| = 1. Further-
more, let .# be the maximal ideal space of X with the Gelfand topology
on it. Denote by m a probability measure on .# which satisfies the addi-
tional condition of being positive on non-empty open sets.

* Taken from the dissertation submitted to the Faculty of the Polytechhic
Institute of Brooklyn in partial fulfillment of the requirements for the degree of Doc-
tor of Philosophy (Math.), June, 1971.
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THEOREM 1.1. For x,y in X, define d(x,y) = m(x # y), where &
and y are the Gelfand functions associated with x and y, respectively, and
(Z # y) is the subset of M, where & and § are unequal. Then d is a metric
on X.

Proof. Suppose «# and y are such that d(z,y) = m(z # y) = 0.
Since # and y are continuous, (Z # ¥) is open in .#, and since m is positive
on non-empty open sets, m(Z # y) =0 = (£ #¢¥) =0 = 2 = § = (since
X is semi-simple) x = y.

The triangle inequality is a consequence of the following set relation
which holds for any «,y,z in X:

(& #§) = (& #£2)V(E#7).
THEOREM 1.2. Letting d(z, 0) = |x|, we have

(@) |o+yl < |o]+]yl,

(b) lzy| < min {2}, |y|}.

Proof. Letting 2 = x+y and w = xy, these inequalities are immediate
consequences of the set relations

(2#0) =(24+y #0) = (& #0)U(Y #0),

- s - - (@ #0),
(W #0) = (@Y #0) = (& #*0)N(y #0)c{ -
. (y #0).
THEOREM 1.3. X; ¢s a topological ring.

Proof. The continuity of vector subtraction is a consequence of
part (a) of theorem 1.2. The continuity of vector multiplication at an
arbitrary point 2, = (x,, y,) follows from the set relation

(W # Wo) = (8Y # Tyfy) (T # Ty) V(Y # Yo),
where w = xy and w, = 2yY,-
Remark. While X is a topological algebra in its Banach algebra

topology, this is not the case in the metric topology. For if a is any non-
-zero scalar, |ax| = || for all x in X.

2. Structure of X ;. As one might expect, or at least hope for, we can
completely characterize X; when X is finite dimensional.

THEOREM 2.1. If X 48 finite dimensional, d is trivial.

Proof. Since X, is a topological ring, it suffices to produce an ¢ > ¢
such that |z| > ¢ for all # # 0. In the finite dimensional case, .# is a finite
discrete topological space. Taking

e =min{m(M)|Me #}
will do the trick.
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THEOREM 2.2. (a) The set of idempotents of X is closed in X,.
(b) If X, i8 complete, then U, the units of X, is closed in X,.

Proof. Since both proofs are similar, only the proof of (b) is presented.

Let ¢ U (U is the closure of U in X,). Then there exists a sequence
{z,} in U such that z, — . Since |z;'| = |z,| for each n, the sequence
{z;'} is Cauchy and so there exists a yeX, such that x,' — y. Then we
have, for any =,

lry —el < le(y — a7 ") + |2 (@ — )| < ly — | + |2 — @,

Since the right-hand side of this inequality can be made arbitrarily
small by taking »n sufficiently large, we must have

lxy—e] =0=>2y =e¢ or y=x'=>zelU.

Hence U is closed in X,.

Definition 2.1. A commutative topological ring R is said to be
bounded iff given any neighborhood V of 0, there exists a neighborhood
W of 0 such that WR < V.

THEOREM 2.3. X,; ts a bounded topological ring.

Proof. Referring to definition 2.1, let V be any neighborhood of
0 such that there exists an ¢ >0 such that 8(0, ¢) =« V, where S(0, ¢)
denotes the spherical ball centered at 0 of radius ¢ Since |zy| < min{|z|,
ly|}, we have 8(0, ¢)X; = 8(0, ¢) = V. Thus, by taking W = 8(0, ¢), we
may conclude that X, is bounded.

Jacobson [2] defines the concept of semi-simplicity for arbitrary
rings. This definition collapses to the usual definition of semi-simplicity
(i.e., intersection of the maximal ideals is the 0 only) in commutative
rings with identity. Since the ideal structure of the Banach algebra X
and the topological ring X, coincide, we have

THEOREM 2.4. X,; i8 a bounded semi-simple topological ring.

" THEOREM 2.5. The units of X are open in X, iff d is trivial.

Proof. A bounded semi-simple ring in which the units are open
is necessarily discrete (cf. [3], p. 158).

3. Ideals in X,;. In this section we present results pertaining to the
topological properties of ideals, in particular maximal ideals, in X,.

THEOREM 3.1. Let I be an ideal. Then I is also an ideal.

Proof. The proof of this result is word for word the same as the
proof of the corresponding theorem in Banach algebra theory and is
therefore omitted (cf. [1], p. 327).

THEOREM 3.2. X, always contains proper closed ideals.
Proof. If d is trivial, there is nothing to prove. So assume d is not
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trivial. Then there exists an z,e¢X (necessarily a non-unit) such that
xy # 0 and |z, < 1. Let ¢ = |z, and let I = (x,) be the ideal generated
by x,. If zelI, then there exists a yeX such that 2 = x,y, whence
2| = |2yl < || and, consequently, I = §[0,¢]. Thus xel implies
lz] < & < 1. Hence I is proper. ‘

While the maximal ideals are necessarily closed in the Banach algebra
topology, this need not be the case in the metric topology. In fact, we
have the following suprising result:

THEOREM 3.3. If X = C[0,1] and m is Lebesgue measure, then there
are no closed maximal ideals in the resultant metric topological ring X,.

Proof. To begin with, we make the topological identification on .#

with [0,1] and, for each fe C[0,1], f —f. Let M be a maximal ideal.
Then there exists an z,e [0, 1] such that we have M = {feX [f(x,) = 0}.
Let e< C[0,1] be the identity function and let ¢ > 0 be given. Clearly,
there exists an f in C[0, 1] such that f(x,) = 0and d(f,e) =m(f #e) < e.
Thus ee M, but e¢ M. Thus M is not closed in X,. (By a straightforward
generalization of this argument, it becomes apparent that M = C[0, 1],
i.e., the maximal ideals of C[0,1] are dense in X;.)

Even though the above shows that a maximal ideal need not be
closed in X, there is a very simple sufficient condition which will guarantee
a maximal ideal to be closed.

THEOREM 3.4. If M 48 an atom of m, then M is both open and closed
n X, .

Proof. Recall that an atom is a point of positive measure.

(a) Let woe M (= @,(M)=0) and let ¢ = m({M}). We show that
S(zy, &) < M which implies that M is open in X,;. Let e S(x,, ¢). Then
d(z, 2) < &, and 50 m(T # By)) < ¢ = m({M}). Now z¢ M = &(M) +# 0
=> Me (T # Z,) > m(T # &) = m({M}) or d(=, z,) > e Hence xe M.

(b) While it can be shown directly, it follows from (a) and a general
result from the theory of topological groups (open subgroups are neces-
sarily closed) that M is closed in Xj,.

COROLLARY 3.1. If m has an atom, X; 18 not connected.

4. Convergence in X ;. We begin with a strengthening of the concept
of convergence in measure.

Definition 4.1. Let (2, &, u) be a measure space. Let {f,} be a se-
quence of measurable functions and let f be measurable also. We say f,
converges to f strongly in measure, and write f, — f (s.m.), iff for each
¢ >0 there exists an integer N such that u(|f,—f|>0) < e for n >N
and all ¢ > 0.

The reader should have no trouble in constructing simple examples
to show that this definition is not void. While convergence strongly in
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measure is obviously stronger than convergence in measure, it is still
not strong enough to imply convergence almost everywhere. An example
illustrating this may be found in [4], p. 96. In the same vein, convergence
almost everywhere does mot imply convergence strongly in measure.
(Take 2 = [0,1], » to be Lebesgue measure, and f,(x) = z/n.)

THEOREM 4.1. z, - in X, iff £, -~ & (s. m.).

Proof. (i) Let ¢ > 0 be given. Then z,, - z in X;, and so there exists
a positive integer N such that » >N = m(Z # 2,) < &.

But, for any ¢ >0, (|2—2,| > o) c (z # &,), so for any o >0 we
have n > N = m(|Z—,| > o) < e.

Thus Z, - (s.m.).

(ii) For each positive integer n we have

(@ # &,) = %J(Ia‘s—s‘vnl > 1/k)

and the union is increasing. Let ¢ > 0 be given. Then &, — & (s.m.), and
so there exists a positive integer N such that

n>N=>m(8—2,>1/k)<e forallk=1,2,...
Hence
n>N=>d@,r,) =m@+*a,) =m[U (52—, >1/k)]
%
= limm(|t—2,|>1/k) < e=>x, - in X,.
k—oo
COROLLARY 4.1. @, = in X; implies T, — & (in measure) and there
exists a subsequence {x,} such that &, — & almost everywhere.

It is now time to consider an example. With the aid of the previous
theorem, we prove the following

CONTENTION. Let X = C[0,1] and let m be Lebesgue measure. Then
the resultant metric space X; is incomplete.

We prove this by actually producing a Cauchy sequence which does

not converge. As usual, we identify .# topologically with [0, 1] and f =f
for all f in C[0,1]. Consider the sequence {f,} in C[0,1] defined as

. 0 for 0<z<1/2—-1/(n+2),
fal) = 1m(x—1/2)4+1 for 1/2—-1/(n+2) <z < 1/2,
1 for 12<2<1.

Let n < m. Then we have

(fa 5 fu) = (fa £Fm) = (1/2—1/(n-+2),1/2) = d(f,, f) = L/(n +2).

Hence the sequence {f,} is Cauchy in the metric d. Now the sequence
{f.} converges pointwise to the step function f, where

8 — Colloquium Mathematicum XXV.2



278 S. COHEN

0 for0<e<l/2,
1 forl12<x<1.

There cannot exist a g in C[0, 1] such that f, — ¢ in X,;. For suppose
there did. Then we would have f, — ¢ (in measure) from which it follows
that we must have g = f almost everywhere, which is impossible since g
is continuous.

fl@) =

5. Completeness of X;. A more general result with respect to the
completeness (or, to be specific, lack of completeness) of X,.

LeMMA 5.1. Let Y be a Banach dlgebm with identity, and let {M,, ...,
M,} be a finite collection of distinct maximal ideals in Y. Then if {a,,...,
a,} 18 any finite collection of complex numbers, there exists a yeY such that
Yy(M,) = a; for all i =1,...,n (cf. [6], p. 38).

LEMMA 5.2. m has at most countably many atoms.

Proof. Since m is finite, there are at most finitely many atoms with
measure greater than 1/n for each positive integer =.

THEOREM 5.1. Let A be infinite. If <7/ < M is the set of atoms of m
and m(LZ) =1, then X; is incomplete.

Proof. We show first that 7 is infinite. Suppose it is not. Then
let o/ ={4,,...,4,} and M¢ «/. Since .# is Hausdorff, for each ¢,
1 <7< n, there exist disjoint open sets #;, ¥; in # such that Me%;
and A,e¥;. Let % = (" ¥";. Then # is a non-empty open set such
that m (%) = 0 which is impossible

Thus let o = {4,,...,4,,...}. We prove that X, is incomplete
by producing a Cauchy sequence which does not converge. Let ¢ >0
be given and let 7, ={4,,...,4,}. Then, 1 =m (&) = lim m(,),
and so there exists an N >0 such that n > N = m(%,) > 1—¢
or, equivalently, m (/) < ¢, where .77 is the complement of «7,.

Now, by virtue of lemma 5.1, there exists a sequence {r,} such that
ZTo(A;) =14 for 1< i< n.

Take n, m > N. Then we have

(@, 7 Tp) & Aj = A(Xyy Bp) = M(B, # Tp) < M(LF) < e
Thus {x,} is Cauchy in Xj;.

Suppose there exists an x in X, such that x, -z in Xd ’_I_‘hen, by
corollary 4.1, there exists a subsequence {mn} such that z, — & almost
everywhere. Smce m(d,) >0 for all A4,, and z, (Ay) ——>m(Ak) for all
k=1,2,..., %, (4;) ~Fk, so z(4;) =k for all k= 1,2,... We have
now arrived at a contradlctlon, since we must have |w(M l lz|| for all
Me ¥;. Thus X,; is incomplete.

COROLLARY 5.1. If # is denumerable (countable, but not finite), then X,
18 incomplete.
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Proof. If .# is denumerable, the hypothese of the theorem is clearly
satisfied.

6. Local compactness. First, a few preliminary results.

THEOREM 6.1. (a) A bounded locally compact ring has a system of
ideal neighborhoods of 0 (cf. [3], p. 160).

(b) For any neighborhood U of 0 in a compact ring R, there exists
a positive integer N such that R" < U for n > N (cf. [3], p. 163).

(c) A compact semi-simple ring must have an identity (cf. [3], p. 163).

(d) An ideal in a semi-simple commutative ring is also semi-simple
(cf. [2], p. 314).

THEOREM 6.2. X; 18 locally compact iff d is trivial.

Proof. Suppose X, is locally compact. Then there exists a neigh-
borhood O of 0 such that O is compact. By theorem 6.1 (a) there exists
an ideal I < O such that, by theorem 3.1, I is a compact ideal. From
theorem 6.1 (d) we conclude that I is semi-simple and hence, by theorem
6.1 (¢), must have an identity (not necessarily the identity ¢ of X ). Since I
contains an identity, (I)" = I for all positive integers n. From theorem
6.1 (b) we get I = S(0, ¢) for all ¢ > 0, whence I = {0}. Therefore I = {0},
and so d is trivial, because I is a neighborhood of 0.

COROLLARY 6.1. X; ¢8 never compact.
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