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ON SOME SUBSPACES OF THE HELLY SPACE
BY

W. F. PFEFFER (DAVIS, CALIFORNIA)

By virtue of being a simply defined function space, the Helly space
seems to be the most natural example of a non-metrizable first countable
compact Hausdorff space. The purpose of this paper is to indicate the
considerable complexity of its topological structure. We shall show that
all separable metrizable spaces are imbeddable into the Helly space and
that they imbed as G,-subsets whenever they are compact.

Let H be the set of all non-decreasing functions from the closed
unit interval I = [0, 1] into itself. The set H endowed with the relative
product topology is called the Helly space. It follows immediately that H
is a compact Hausdorff space. For other elementary properties of H
we refer the reader to [3], Chapter 5, Problem M, p. 164.

PROPOSITION 1. A product of countably many copies of H is imbeddable
into H.

Proof. Let H, be the set of those zeH for which z(f) =1
for all te(1/2,1]. Lett, =1—27" and let ¢,(¢) = t,_,+(t, —t,_1)t, tel,
n=12,..1If

& = {@ylncr€ ”Hu
n=1

set
B (&)(t) = pp0@,0p," (1) for te[t,_ ), 1,), n=1,2,..., and @(£)(1)=1.
Then
b: H,—-H

is a continuous injection, and so it suffices to show that H, is homeomorphie.
to H. This homeomorphism is realized by a continuous bijection ¥: H—H,
defined, if zeH, by ¥ (x)(t) = «(2t) for {[0,1/2] and by ¥(z)(t) =1
for te(1/2,1].

COROLLARY. Every separable metrizable space is imbeddable into H.



42 W. F. PFEFFER

Indeed, by Proposition 1, and [2], Chapter 9, 8.4, p. 193, the Hilbert
cube can be imbedded into H.

For A =« H we denote by D, the set of all teI at which some wed
is discontinuous. -

PrOPOSITION 2. A set A <= H is separable and metrizable if and only
if D, i8 countable.

Proof. (a) Suppose that D, is countable. Let @ be the set of all
rational numbers from I and let R = D,uQ = {t,};-,. For o, yeH set

o(®,9) = D 27" |m(t,) —y (1)

Clearly, ¢ is a continuous pseudometric on H which is a metric on A.
Thus to prove the metrizability of 4 we only need to show that the
o-topology on A is finer than the relative product topology. Choose
xeA, tel, e > 0, and let

U={yed: |[z(t)—y(t)| < s}.
If teD,, then ¢t =1, for some integer k> 1. Letting
V ={yed: o(z,9) <e274,

wehave V <« U.If t¢ D ,, then x is continuous at ¢ and we can find ¢,,, t,¢ @
such that ¢, <t<1t, and

z(t)—e/2 < w(l,) < @(l,) <x(t)+¢&/2.
Let 8 =1+ max(m,n) and o(z,y) < &-27% Then.
B(ty) — /2 < Y(1,) < Y@) < y(8) < @(t,) +¢/2,
and hence z(f)—e < y(f) < #(t) +&. Thus, letting
V ={yed: o(z,y) <e&27%,

we have again V < U. Let 4, be the set of all zeH for which D, <« D .
Since D4 = D4, A, is also metrizable by ¢. Let B be the set of all con-
tinuous piecewise linear functions xe¢H such that [¢, z(t)]e @ X Q@ when-
ever  has a corner at t. Then B « 4, and B~ = H. Thus A, is separable
and so is A; for A4, is metrizable.

(b) Suppose that D, is uncountable. Since each x¢H has only count-
ably many discontinuities, there are an uncountable subset D, = D, and
an injective map ¢+ x, from D, into A such that x, has a discontinuity
at t. Then we can find an uncountable set D, = D, and ¢ > 0 such that
xy(t+)—x,(t—) > ¢ for all teD,. Finally, there are an uncountable set
Dy < D, and a,be(0,1) such that

(t—)<a<b<m(t+) for all teD;.
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With no loss of generality we may also assume that, e.g., 2;(t) < b
for all teD,. Let A, = {x;: teD;}. Considering the family of non-empty
open sets

U, ={wedy: 0<@(t) <b}, teDy,
it is clear that 4, does not have a countable base.

For x, ye H write # ~ y whenever ({1 —) = y(t—)and (t+) = y(t+)
for all tel. Clearly, # ~y if and only if # and y agree at all points tel
at which they are both continuous. If T < I, write # ~;y whenever
x ~y and 2(t) = y(?) for all {<T. Obviously, ~ and ~y are equivalence

relations on H, and we denote by [x] and [#], the corresponding equiv-
alence classes of xeH. For A < H, let

[A]l=UT[»] and [dlr=U [z]r.

zed xed

We have [A], = [4], [A]p, = 4, and [4]g = [A]; whenever TcS.

LeMMA 1. If Ac H and 8,T < I, then [[Alg]r = [Alsnr-

Proof. (a) If z¢|[4]g)r, then there are ye[A]s and zeA such that

x~py and Y ~gz.

Hence # ~g~r?, and 80 ve[A]lgnr.

(b) If xe[Alg~r, then there is a zeA such that ¢ ~g.p2. For tel,
set y(t) = z(t) whenever z is continuous at ¢ or te7, and y(f) = 2(?)
otherwise. Let t,,%,¢l, ¢, <t,, and choose #,¢(?,,t,) such that x is con-
tinuous at t,. Then x(t,) = 2(%) = y(%,), and hence y(t,) < ¥ () < ¥ (1s).
Thus y<H and, clearly, ¥y ~y @ and y ~ 2. Choose {e8. If # is continuous
at t or teT, then y(t) = x(f) = 2(t); otherwise, y(f) = z(t). Hence y ~g=z
and ze[[4]g]r-

Choose T < I. Since the functions z+> z(t—) and x> z(t+), tel,
are lower and upper semicontinuous, respectively, on H, it easily follows
that the quotient space H/~y is Hausdorff. Thus, by [2], Chapter 6,
4.2 (1), p. 125, if A < H is compact, so is [A]p.

LeEMMA 2. Let A,G < H, A compact and G open. If A = @, then also
[A]lr = G for some finite set T < I.

Proof. The set G is a union of open rectangles

Gtyyoeeyty; Usy.ony Up) = {weH: a(t)eU;, i =1,...,0},

where ¢;eI and Uy, ¢ =1, ..., n, are open subsets of I. Since 4 is com-
pact, it is covered by finitely many of these open rectangles, say
G(t, ...,t{,j; v, ..., UZ,).), j=1,..., k.
Hence, if '
T={t:41=1,...,n;;j =1,...,k},
then [4]r < G.
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PrROPOSITION 3. A compact set A « H 18 G, if and only if A = [A]p
Jor some countable set T < I.

Proof. (a) Let
4 =G,
n=1

where G, « H are open sets. By Lemma 2, there are finite sets 7, = I
such that [4]; < G,. Letting
T = U T n
n=1
we have 4 c [A]y < [A]y, = Gyy n =1,2,..., and s0 4 = [4d]y.
(b) Let A = [A], for a countable set T = I and let 8§ = {t,},~, be
a countable dense subset of I which contains 7. For z, yeH, set

o(z,y) = D 27" @(t,) —y (L)
n=1
It is easy to see that o is a continuous pseudometric on H such that
o(x,y) =0 if and only if # ~gy. If o(2, A) = inf{c(x, y): yed}, then
x+>o(x, A)is a continuous function on H. Hence 4, = {reH: o(z, A) = 0}
is a closed Gs;-subset of H and it follows easily from the compactness
of A that 4, =[4]g. By Lemma 1,

[A]s = [[A]T]S = [A]Tns = [A]T =A.

COROLLARY. Compact metrizable subspaces of H are @G,.

Example 1. Let A <« H consist of all xeH which take values in
{0, 1}. Then A4 is closed and it is easy to see that A is also perfectly normal.
In fact, A is homeomorphic to the space 4, from [1], Chapter 5, Section 1
(the latter space is sometimes quoted under the name “two arrows”).
According to Proposition 3, 4 is not G5. With no difficulty one can also
observe that [4], which is G,, is homeomorphic to the lexicographically
ordered square (see [3], Chapter 5, Problem J).

Example 2 (1). Let 4 be as in Example 1 and let X = [A]xX[4]—
—A xA. Then X is a locally compact Hausdorff space. We show that X
is metacompact but not paracompact.

(a) Since

X = {([A]-4)x [AT}u{[A] x ([4]—4)},

where both summands are paracompact and open in X, it follows that X
is metacompact.

(') With respect to this example the author is obliged to G. Gruenhage for
some stimulating discussions.
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(b) Since [A] is homeomorphic to the lexicographically ordered
square, [A] is connected. Choose z,e[A]—A. If (x,y)eX, then, e.g.,
z¢A. The set ({z} x [A])u([4] X {x,}) is a connected subset of X contain-
ing both (z,, #,) and (x, y). Therefore, X is connected and so, according
to [2], Chapter 11, 7.3, p. 241, it suffices to show that X is not s-compact.
Let B = H consist of all ze H for which z(t) {0, 1/2} ifte[0, 1/3], z(t) =1/2
if te(1/3, 2/3), and x(t)e{l/2, 1} if te[2/3, 1]. It is easy to see that 4 x 4
and X are homeomorphic to B and [B]—B, respectively. By Proposi-
tion 3, [B] is a G,-subset of H while B is not. From this it easily follows
that [B]—B, and hence also X, is not o-compact.

Example 3. Let {X,}..s be a family of topological spaces indexed
by a topological space A. In
X=40U X,

aed

we define a topology as follows: a neighborhood base in X at xeX, is
given by any neighborhood base at x in X,, and a neighborhood base
in X at aeAd is given by sets Uu |J {X4: fe U —(a)}, where U is a neigh-
borhood of a in 4. It is easy to verify that if 4 and all X’s are first count-
able compact Hausdorff spaces, then so is X. Moreover, if X, # @ for
uncountably many aed, then A4 is not G, in X. It follows that if 4 is
a metrizable compact and X, # @ for uncountably many ae¢A, then X
cannot be imbedded into H.

Finally, we show that, in general, open subsets of H can be quite
complicated.

LemMA 3. A separable metacompact space is Lindeldf.

This lemma was stated and proved in [2], Chapter 8, 7.4, p. 176,
for paracompact spaces. The proof, however, applies verbatim also to
metacompact spaces.

PROPOSITION 4. An open subset of H is a-compact if and only if it is
‘metacompact.

Proof. (a) Let G <« H be an open metacompact set. Since H is sepa-
rable (see [3], Chapter 5, Problem M, (c)), so is G. By Lemma 3, G is
a2 countable union of open rectangles, and thus o¢-compact, for open
rectangles are o-compact.

(b) Since every o-compact space is paracompact, the proof in the
other direction is trivial. .

Since H is not perfectly normal, it indeed contains non-metacompact
open subsets.

Remark. Let S be an arbitrary ordered set and let X be the set
of all non-decreasing functions from 8 to I. The set X endowed with
the relative product topology is a compact Hausdorff space which is
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a simple generalization of the Helly space. By the technique employed
in the proof of Proposition 3, it can be shown that X is first countable
if and only if S is separable in the order topology. This last condition
is equivalent to saying that 8 is homeomorphic to a subset of I.
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