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Introduction. We write T = R/2nZ for the unit circle considered
a8 the real line with {4 2= identified with ¢. If x4 is a measure on T, we
write

i(r) = [exp(—iro)du(@) and  S,(u,t) = D s(r)exp(in).
T

f=-—n

If f e L(T) (i.e. if f is Lebesgue integrable on T'), we write

; 1 . o, .
M G) =—2—n-1fexp(—zrw)da: and 8,(f,?) ='2f(r)exp(zrt).

-—1

Oarleson has shown [1] that if f e L*(T), then 8,(f, ‘) = f almost
everywhere with respect to Lebesgue measure. On the other hand, we
have the famous theorem of Kolmogorov:

THEOREM A. There exists an f e L'(T) such that S,(f, -) diverges un-
boundedly everywhere.

The purpose of this paper is to give a proof of this and related results.
The basic idea remains that of Kolmogorov but the exposition is simpli-
fied by using modern notation and a number theoretic result of Kronecker.
The idea of using this occurred to Stein and Kahane independently ([7],
[3]). We add a further simplification (as compared, say, to the presenta-
tion of these ideas by Katznelson [6], Chapter 2) by applying Lemma 1.1.
This is the only originality claimed.

1. Independence. In this section we lay out the simple number the-
oretic results that we need.

Definition 1.1. We say that »,,2,, ...,2, €T are independent if

n
2, myw; = 0 with my € Z (1 <j<n) only has the solution m, =m, = ...
J=1

LX) =m“ =0-
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Thus, for example, 1+=x,1 are not independent since 2(1+ =)+
+(—2)'1=0.

Independence is not preserved under translation but, on the other
hand, translation cannot introduce more than one relation.

LemmA 1.1. Suppose z,,zsy ...,&, €T are independent and teT.
Then if

n n . .
Dimylagy—t) =0, Ymye;—1) =0 with m,meZ 1<j<m),

j=1 7=
we can find k,1 € Z not both zero with km, = Im,.
Proof. If }'m, =0, then > my(x;—1t) = 0 gives > m;a; = 0, so that
m, =mg = ... =m, =0 and the result follows with ¥ =1, I = 0. Thus
we may assume that Y m; # 0. Set ¥ = 3'm; and I = 3'm,; then

n

D (lemy—Tmp)ay = 3 my(a;—t)—1 ) mj(a;—t) =0,

fm=1 ju1 ju=1
and 50 km,—Im; = 0 (1<j<n) as stated.
We recall the basic result on independence due to Kronecker.

THEOREM (Kronecker). Suppose z,,2,,...,2,€T are independent.
Then givm J‘l’ 13’ o-o,lneC with ll]" = ll,l = el = |1”| =1 and 8>0
we can find m € Z with

lexpima;—Al<e  (1<j<n).

Hardy and Wright give a discussion of the theorem together w1th
three different proofs in Chapter XXTIT of [2].

As a trivial consequence we have the following corollary:

LemMA 1.2. Suppose z,, x,, ...,x, €T are independent. Then given
Tyy Tay «ooy Ty With 7; taking the value +1, and gwm &> 0 we can find an
meZ 'wcth m =0 and

<e (@A<j<m).

1

Proof. Take A; = r;iexp(—4i2;) in the theorem of Kronecker.

Finally, we need to know that we can always find enough independent
points. This is easy to show.

LemmA 1.3. Suppose I1,, I, ..., I, are open intervals in T. Then we can
find independent points @, x,, ..., x, with v;eI; (1 <j< n).

Proof. Pick rational numbers ¢, ¢y, ..., q, such that 2=g, el
and a transcendental number y. Then if N is a positive integer, the points
x; = 21c(q,+y’ N-1) are certainly independent and, provided we take N
large enough, it follows that x; € I; (1 <j< n).
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2. The basic measure. Let us choose # > 10° and «,,%3s...,2, €T
independent points such that a; is close to 2=j/n; to be more precise,
|#; —27j /n] < e(n), where 0< e(n) <107*n~' (later we may require
ne(n) - 0 at some particular speed as n — oo, but for the proof of The-
orem A the reader can take e(n) = 107%*n7!). If 6@ is the Dirac unit point
mass at x;, then

3,1(5') = exp( —iryy),

and
m Ty Mt — A
Sm("zj’ t) = Zexp(ir(t—a,j)) - Smg:zl;-(tiﬁwj) ;) ’

where [sin(m + §)8]/sin }s has the value 2m +1 when s = 0.
We define our basic measure to be

n
p = n"Zéxj.

i=1

We note at once that ||ju|| = 1 and that uisa ppsitive measure. Further

N 1 N sin(mt ) —a)
(1) Sulw,t) =n ’gsm(%") = 72; sin(t—a)

How large is 8,,(u,?)? Observe that since |sinz| < |z| for |2| < =/2,
we have R ‘
Isin (¢ —a;)|"' > 2|t —ay| 7"

Moereover, since the #; are more or less uniformly distributed round 7,
8o are the ¢t —a,;. In particular, if we choose j(0) so that [t —z;q| < |t —a;
(1 <j < n),then

4t 6w
It — 2y 11l 18 —@y0—1] < et [t —®s0)42ly 18 —Zy0)—2| < o

and, in general,
(2r+2)w n—2

- 1<r< 3

)

[t —2y0) 4ol 1t —Tyo)—l <

(making the obvious convention that @;,, = ;). Thus

1 1 1 2n 1 1 _ logn
— ¥ _ > T v T Y- L
n g |sin § (¢ — ;)| n 1<r<(2n-z)/z 2r+2)s " = P b
In other words, if we can choose m 8o that there is no eancellation
in our formula (1) for 8, (4, t), we can get |8, (u, t)| of the order of logn.

Choosing the x; to be independent ensures that we can always do this.
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LemMmA 2.1. If u i8 chosen as above, then
sup |8, (4, t)| =>10""logn for all teT.
m>0

Proof. There are 4 possible cases to consider the first of which may
be regarded as typical.

Case 1. All the (z; —?) are independent. Then by Lemma 1.2 we can
find an m = 0 such that

sin(m + §) (¢t —;) _ 2
sind(t—xz;) ° 3lsin}(t—ay)|

for all j.

Case 2. There exist integers m,, m,, ..., m, at least 2 of which are
non-zero such that > m,;(x,—t) = 0. Choose j(0) to be a j with m; # 0
for which |v;—t| is the greatest. Then |z, —? > =/2n, and so (since
[sinz| = 2 |#| /= for |@| < =/2) |sin }(t—w,(o))l“ < 4n/n. But, by Lemma 1.1,
the points &; —¢ with j # j(0) must be independent, and so we can find
an m = 0 such that

sin(m + §) (¢t —ay) > 2

sinj(t—=2,) = 3sin§(t—a)) for all j # 5(0)

(2)

and, consequently,

1 2 1 1
'3 |sin}(t —w,)l n|8in § (¢ — ;)|

Sp(pyt) > —
3#’(0)
b 4

-1
3n2 |sm}(t o) 3w o0 logn.

Case 3. There exists a §(0) such that m,(w;e —?!) = 0 for some
me =1 but @y —t # 0. Then, by Lemma 1.1, the points x,—i, and so
also the points m,(2; —?) with j # j(0) must be independent. Thus, by
the theorem of Kronecker, we can find an integer ¢ > 0 with

sin(moq+ §) (¢ —a) 2 .,
= .
sin} (¢ —a;) = 3lsin}(t —ay)| for all 5 #3(0)
Then
1 2 1
(By8) = —>10""'logn.
Smoa —

i;(o) 3|sin §(¢ w,)l n

Case 4. There exists a j(0) such that z,,—¢ = 0. Once again the
points x; —¢ with j # j(0) are independent and we can find an m such
that (2) holds. We have
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1 2 om+1
Smluyt) =7 #Zm;) SEniG—a) | n 07" logn

Since the 4 cases are exhaustive, the lemma is proved.

3. The basic function. The contents of this section are routine third
year undergraduate analysis. Proofs are given for completeness but it
is unlikely that the reader will need to consult them.

LEMMA 3.1. If u is as in Section 2, then we can find an M such that

sup 8, (u,t)=>20""'logn for all teT.
o<m< e ' '

Proof. For each teT we can find an m(t) such that 8,,(u,?)
> 16" 'logn. Since Sme(p, t) 18 a trigonometri¢ polynomial, so a con-
tinuous function, we can find an #(t) > 0 such that 8, (x, 8) > 20"'logn
for all 8 € (t—n(t), t+n(?)). Since T is compact, we can find ¢, ¢, ..., {,
such that

Ut —n(t), tet (i) =T

Setting

M = maxm(t,)
igk<r

we have the result.

Now we approximate our measure by a function.

LEMMA 3.2. There exists an infinitely differentiable positive function
f: T—> R such that

. n 2 . 2 .
(1) suppf < U [’LJ —2¢(n), —1"-+28(”)];
J=1 n n
3rf/n+-2¢(m)
. 1 ‘ 1
(i = | fwa==,
T andin-2e(n)
(i) sup |8,(f, )l > 40 logn.
KM M

Proof. Let h.:T— R be an infinitely differentiable positive func-
tion such that

. T T
(l)r supph, = ['— ';" —1'—]’
1 nir
(ii), 7 f h(t)dt =1.

—~n/r
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Direct calculation shows that h,(m)»>1 = d,(m) and thus, writing

f,(®) = pob,(t) = n7' D'k, (t—a)),

J=1

we get f,(m) — s(m) a8 r — oo for each fixed m. Thus 8,,(f,, ) = Su(s, *)
uniformly as r - oo for each fixed m. Moreover,

+n/
T Eh

n ” 1
Suppf, = jg &y — ‘;" .’Bj-{— T] and -2—1; f(t)di = 7,

zj—uln

so the result follows on taking r large enough and setting f = f,.
Finally, we approximate our function by a trigonometric polynomial.
LEMMA 3.3. There exists a trigonometrio polynomial P given by

N
P(@t) = 2 a,exp(irt) (teT)

rm—N
say such that
. 1
(i) = .f P(Hdt< 2,
27
(ii) sup |8,,(P, %)= 40"'logn.

0<m<N C
Proof. Since the f of Lemma 3.2 is infinitely differentiable, we may
integrate twice by parts to obtain

If(m)) < Am~2 (m #0), where 4 = 1 flf"(t)ldt.
- 21:T

In particular, we may find an N > M such that

2 fmi<1.
ImI>N

The Weierstrass M test now tells us that ) f (m)exp (imt) converges
Im|>N

uniformly to a continuous function g. Using uniform convergence we
obtain at once §(m) = f(m) for |m| > N, §(m) = 0 for |m| < N and

1
o [ OIS D fmi<1.
imi>N
Set
N
P(t) = 2 f(r)exp (irt).

r=—N
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Then P is a trigonometric polynomial and P(m) =f(m) for jm| <N ,
P(m) =0 for |m| > N. In particular, 8,(P,t) = 8, (f,?) for |m| <N,
so (ii) follows from Lemma 3.2 (iii). Since (P+g)" (m) =f(m) for all m,
it follows from the uniqueness theorem for continuous functions that
P+g =f. Thus

1 1 1
3r | PO <o [0l oo [igonae<s

and (i) holds.

4. The proof of Kolmogorov’s theorem. We can now prove Kolmo-
gorov’s theorem by the condensation of singularities. The proof, in fact,
gives slightly more.

THEOREM A.l. There exists an f € L'(T) such that f(r) = 0 for r< 0
and such that 8,(f,') diverges unboundedly everywhers.

Proof. By Lemma 3.3 we can find trigonometric polynomials P,
and integers N (k) such that

s 1

) 37 | a0 <,

(id) sup |8, (P, 1)1 =>2% for all teT,
<M< N(k)

(iii) P.r) =0 for jr| > N (k).

Set M (k)=(N(k)+1)+2 2 (N(g)+1) and @, (t) = exp(s M (k)t) Py (¢).
Then

(i)’ = ‘[ Qu(t)ldt < 2

and since 8,(Qy,?) = exp(iM (k)t)S _M(,,,(P,‘,t) for m > M(k)+ N (k),
we have

(ii)’ Sup |8 (Qsyt) —8a (@, 8} = sup |85 (Pry 2)] > 2%,
m,na0
Automatically,
(i)’ Qu(r) =0 for |r—M(k)| > N(k)+1.

Now observe that since L' is complete, 3 27*Q, converges in L'

-]

A 4
to f say, and D 27%|Q,| to y say. Since
k=1

Ty > | 22'*Q,,(t)|

k=1
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almost everywhere, we can use the dominated convergence theorem of
Lebesgue to show that
firy = D'27%Q, (),
k=1
and so

27%Q,(r) for r—M (k)| < N(k) (k>1),
0 otherwise.

(iv) f) =

Thus f(r) = 0 for r <0 and
Sup ISm(f’ t) —Sn(f7 )| = sup |Sm(Qk’ t) —Sn(Qk? t)l

m,n>0 M(k)+N(k)>m,n>M(k)— N(k)

> 27%sup |8, (P, t)| = 2% for all k> 0.
m>0 .

Thus 8,,(f,t) diverges unboundedly for all ¢t e T.

5. Further remarks on Kolmogorov’s theorem. This section contains
remarks of more specialized interest and should be omitted by the general
reader.

Remark 1. Minor variations of the condensation method used in
Section 4 yield minor variations of the theorem.

THEOREM A.2. There exists a real function f € L'(T) such that S,(f, *)
diverges everywhere.

Proof. Checking through the work of Section 3 we see that the P
of Lemma 3.3 is, in fact, real. Thus proceeding inductively we can find
real trigonometric polynomials P, and a strictly increasing sequence of
positive integers N (k) such that (writing N (0) = 1)

; 1
(i) 5= [ B <,
T
(id) sup |8, (P, 1)
ImI<N(k) -
> 2%+ (N (k=1)+1) (14 D' sup sup |8, (Py, 1)),
j=1 ImIKN() teT

(i) B.r) =0 for |r| > N(k).

Note that condition (i) implies |2, (m)] < 2, and so

18, (Pp, ) < 2m+1<2N(k—1)+1 for 0<m< N(k—1).
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Simple computation shows that 3 2-*~YN(k—1)+1)"'P, con-
k=1
verges in L' to a real function f such that

limsup |8,,(f,t)] = oo for all teT.
m—>00

Remark 2. Our calculations do not tell us how fast S,(f, -)diverges.
Indeed, if the «,, 2,,..., 2, are chosen arbitrarily, then no bound can be
put on the N of Lemma 3.3. However, if we take #; = 2x(100~7 4j/n)
(1<j<n) (though now the x; are not, strictly speaking, independent
but only “almost independent”), we can show using the quantitative
version of Kronecker’s theorem given in Appendix V of [4] (or barehanded
methods) and the arguments of Section 3 that the following is true:

LeMMA 2.1°. With the x; chosen as in the paragraph above we have
sup{|8,, (4, t)|: 0 < m <100"} >10"'logn for all teT.

Next examining the approximations to the function é we get the
following result:

LEMMA 3.2°. There exists an infinitely differentiable positive function
J: T — R such that

(i) 0 < f(t) < 100+,
() [fwat =1,
T
(iii) sup {I8,(f, t): 0 < m < 100"} > 40 'logn.

This can be trivially rewritten as

LEMMA 3.2”. There exists an infinitely differentiable positive fumction
f: T—> R such that

(i) 0<f)<N,
(ii) [fwmat =1,
T
(idi) sup {|8,(f, t)l: 0 <m << N} >10"%loglogN.

The argument of Section 4 and Remark 1 of this section give

LeMmA 5.1. If y(n) = O(loglogn) a8 n — oo, then we can find an
f € L'Y(T) (which may be taken to be real or to have f(r) = 0 for r < 0) such
that

limsup M = 00

or all teT.
m—>o0 tp(m) f
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LeEMMA 5.2. If y(x) = O(loglogz) a8 x — oo, then we can find an
f € L) (T) (which may be taken to be real or to have f(r) = 0 for r < 0) such
that

JiFoiv(if@®))de< oo
T

but
limsup |[8,(f,t)) = o for all teT.
m~>o0

We thus recover the results of Tandori [8].

It is known (by a remark of Carleson expanded by Sjolin {6]) that
y(n) = O(loglogn) cannot be replaced by y(n) = O(lognloglogn). Better
results are claimed by M. and 8. Izumi but these are still controversial.

Remark 3. By direct construction of suitable z, with |2, —2=j/n|
< 107*/n (1 < j < m) we can prove the following result:

LEMMA 5.3. Suppose m(1), m(2),-... i8¢ a sequence of positive imtegers
with m(r) > oo. Then given an integer p > 1 we can find x;, Tgy ..., T,
and a collection of positive integers 8(1), 8(2), ..., 8(nP) with m(s(r_+ 1))
> 10m(s(r)) such that u = n~" 2 8., has the following property:

i=1
If (j—1)p+1<8<jp, then
'Sm(a(r)) (/‘7 ) =

whenever t € [x;_,, ], |t —2mu/m(s(r))| < 10‘m(s(r))) for some integer u.
(Here, as usual, z, = x,.)

Repeating with minor modifications the construction used in Re-
mark 1 of this section we get a version of another theorem of Kolmogorov.

THEOREM 5.1. Given a sequence of positive integers m(r) — oo we can
find a real function f € L'(T) such that

limsup8,,,(f,t) = oo  for almost all teT.
r~>00

40" 'logn

It can be shown that if m(r +1) > Am(r) for all » > 1 and some 1> 1,
then whenever f € L' (T) and f (k) = 0 for all k < 0 it follows that 8¢, (f, t)
converges almost everywhere ([9], Chap. XV, § 4). It is also not very difficult
to show that, provided m(r) - oo sufficiently fast, then if fe L'(T) is
a real function, we can find an z €T such that 8, (f, ) converges as
y — oo.

6. Bounded divergence. A theorem of Marcinkiewicz. Let us look
agam at the basic function f of Lemma 3.2.

LEMMA 6.1. If (logn)™! < ne(n) and f: T — R 18 an infinitely differen-
tiable positive function satwfymg conditions- (i) and (i) of Lemma 3.2,
then
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(iv)  18,(f, %) < 40logn
provided only that t¢ | ) [2%" —4e(n), -2—:?-+ 4s('n)] .

i=1

Proof. We have

18 (f D) = "2%: | Zm,’ exp(ir(t —a)) () de

T r=m-—m

1 ’fsm(m-}-})(t-—m)
T on

sin(t —x) f(@)do l

n 2nfin+2¢(n)

sin(m+ %) (t —x)
sin } (¢t —z)

f(@)da ]

i=1 ' 2nj/n—2¢e(n)

n

< 3w
S 2,5

j=1

1 T 2 2n)
< (g iy w‘T]'@“”’}

j=1

sin(m + }) (1 —=)
sin}(t —x)

:.w 21:_')

23(%)]

™ n
< — — )<
<- (2nlog'n+3 2r+1)\ 40logn

o<re<n/2

bearing in mind, first, that |sint| > 2¢/= for [{|] < =/2 and, second, that ii
we choose j(0) so that |t —2#%)(0)/n| < |t —2=j/n| for 1 < j < n, then

t_fi(j(_")j_l') , t__z_“(im ;.1,
n n n
,_ 2n(i(0)+2) | ,_ 2mli0)—2) | 3
n n n

and, in general,

It— 21:(j(0)+r)
n

> (2r —-1)n .
n

. 2n(§(0) —7)
’ n

Finally, we note that if |z —2xj(0)/n| <2e(n) and [t—2xj(0)/n|
> 4¢(n), then

|z —t] > 2e(n) > 2(nlogn)~?,
which allows us to complete our estimate.

8 — Colloquium Mathematicum XLV.1
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We can now sharpen Lemma 3.3 without further work.

LEMMA 6.2, There exist a trigonometric polynomial P and a closed set B
such that

(i) o J POlat<2, [POI<1 for ¢,
™
(i) sup |8,, (P, t)| > 40~ 'logn,
m>0
(iii) meas (B) < 8n~'logn,
(iv) 60logn > |8,,(P,t)] for al t¢E, meZ.

Using this we get the remarkable theorem of Marcinkiewicz.

THEOREM B.1l. There ewists an f € L*(T) such that f(r) = 0 for r< 0
and such that 8.(f, ) diverges boundedly almost everywhere and diverges
everywhere.

Proof. By Lemma 6.2 we can find closed sets Z,, trigonometric
polynomials P, and integers N (k) such that

. 1
(i) o J PedIdt<2, |P()I<1 for t ¢ K,
(ll) sup Ism(Plu 1) = > 407! '2"7
<M< N (k)
(1ii) b,(r) =0 for r> N(k),
(iv) meas () < 27%,
(v) 50-2% > |8, (P;,t)] forallt¢E,, meZ.
Set

k-1
M(k) = (N(k)+1)+2 D (N(9)+1) and  Q.(t) = exp(iM(k)?)P,(2).

g=1
As in the proof of Kolmogorov’s theorem in Section 4 we see that
2 27%Q, converges in 1}l to a function f which satisfies (iv) in Section 4.
k=1
Now suppose ¢ ¢ 2 B, . Then if k> p, we know from (i) and from

k=p
(iv) in Section 4 that

|8 aary + veaey (5 t) — B nmpy-nay (F, V)] = 27510, (8)] = 27%|P,(1)] < 27°F,

whilst if |r—M (k)] < N(k), we infer from (i) and (v) by a similar argu-
ment that
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18, (fs 1) = Baay-na (Fr D1 = |25 3" Qu(s)exp(ist) |
8= M(k)— N(k)

r—M(k)
=2"‘| 2 P,,(s)exp(ist)l
8=—N(k)

<27%.2 sup |8, (P, t) <100.
o<m<N(k)

Thus

|S,.(f, t) _SM(p)-N(p)(f’ 1) <200+ Z 27k < 201,
k=p

limsup |8,(f, t)] < oo.

We have thus shown that if ¢t ¢ E = () {J E,, then

D=1 k=p

limsup |8, (f, #)| < oo.

->00

But E < | E;, so by (iv)
k=p

[ <]

meas(E) < Emea,s (By) <27 for all p>1,
k=p
i.e. meas(H) = 0.
Finally, just as in the proof of Kolmogorov’s theorem (Theorem Al),
we note that f(r) = 0 for » < 0 and that

sup |18,(f,t) —8a(f, 9) > . sup 27" 18, (Qis 1) — 8, (O )]
m,n>q M(k)+ N(k)>»m,n> M(k)—-N(k)

> 2" %gup |8, (Py, )] = 407!
m>0

for all ¥ with M (k) — N (k) > g, so that limsup |8,,(f, t) —8,(f, )| = 407!

m,n—>o0

for all te T and 8,(f, -) diverges everywhere.

7. Further remarks on Marcinkiewicz’s theorem. This section, like
Section 5, is devoted to remarks of more specialized interest and should
be omitted by the general reader.

Remark 1. Methods identical with those of Section § produce results
corresponding to Theorem A.2, Lemma 5.2 and Theorem 5.1.

THEOREM B.2. There exists a real function f € L'(T) such that 8,(f, *)
diverges boundedly almost everywhere and diverges everywhere.
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LeEMMA 7.1. If y: R— R 18 a continuous positive function with y(x)
= O(loglogz) as x — oo, then we can find an f e L'(T) (which may be
taken to be real or to have f(r) = 0 for r < 0) such that

JIroI(If @) dt < oo,

T

but 8,(f, -) diverges boundedly almost everywhere and diverges everywhere.

LEMMA 7.2. Given a sequence of positive integers m(r) — oo we can
find a real function f € L' (T) such that By (fy 1) diverges for almost all t but
sup |8, (f, 1) < oo for almost all t.

m>0
Remark 2. The estimates of Lemma 6.1 and Lemma 3.2 (the latter
depending basically on the estimate of Lemma 2.1) can clearly be refined
without any difficulty.
LEMMA 7.3. Suppose we are given e(n), ' (n) > 0 with nlogne(n) <1,
nlogne’ (n) » oo. Then we can find positive infinitely differentiable functions
Jo: T — R and positive numbers 6(n) — 0 such that

. Con o
(i) suppf, < U [_12' —'25(”)7'_731'{"23(”)]7
jmilL 7 n
2mj/n+26(n)

() = | fwa-1 G-12..,m,

T

2nj/n—2¢(n)
i 8, (fay )= (1—8 “ldflltT
() supiS,(fe, 01> (1~ (n))”{ e 0 Jor el teT,
: 1
(iv) SupI8fu, 1 < (14 8] /f g

* [ 2nj 2rj
for all t ¢ —n—J—2s’(n), halih +2s’('n)].
jmlL N n
From this version of Lemma 6.1 it is easy to get, by the methods of

Section 6, the following quantitative version of Theorem B.1:

LEMMA 7.4. Let h: R — R be an increasing continuous fumction with
h(0) =0 and h(t) = O(tlogt™') as t—> 0+. Then we can find a set E of
Hausdorff h-measure 0 and a. function f e L'(T) (which may be taken to
be real or to have f(r) = 0 for r < 0) such that

limsup 8, (f, t) —8,(f,t)l =1 for all t ¢ E
m,n—+00

and S,(f, ') diverges everywhere.
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In the next and final section we will give an argument of Marcinkie-
wicz which shows that if f e L'(T) diverges almost everywhere, then it
must diverge unboundedly on a set E’ which is everywhere dense. It might,
therefore, be interesting to investigate the Hausdorff dimension of this
residual set E'.

8. A converse theorem of Marcinkiewicz. We conclude this exposition
by giving a slightly expanded version of Zygmund’s account of Marcin-
kiewicz’s elegant converse result.

TueorReM C. If fe L' and 8,(f, ) diverges almost everywhere (with
respect to Lebesgue measure), then 8, (f, ) diverges unboundedly on a dense
subset of T.

Thus we cannot improve Theorem B.1.

We require 4 results the first 3 of which are easy to prove but the
last — the well-known theorem of Carleson — is still very difficult.

LemmA 8.1. If fy, foy ... are continuous functions on T and we can find
an open interval I such that sup|f;(x)| < oo for each x € I, then we can find
j

an open interval J = I and a K > 0 such that |f;(x)| < K for all j2>1,
rved.

Proof. By Baire’s category theorem, at least one of the sets
E, ={zel:|fi(x)l<n for all j >1} must have a non-empty interior.

LEMMA 8.2. If fe L' and limsup |8, (f, )| < K for almost all z €1,

n—+c0

I being an interval, then |f(x)| < K for almost all x € I.
Proof. Since f e L', we have

Sof +8uf + o +8,f

n+1 I

o.f =

almost everywhere ([6], p. 20, or [9], p. 90). The result follows.

LEMMA 8.3 (principle of localization). If f, g € L', ¢ > 0 and f(1) = g(t)
for almost all t € [x —e, x+ €], then |S,(f, ) —8,(g,x)| - 0.

For the proof see [9], p. 52.

THEOREM (Carleson). If f € L* (and 80, in particular, if f € L™), then
8,(f, +) converges almost everywhere to f.
For the proof see [1].

The proof of Theorem C is obtained by a simple application of these
results.



118 T. W. KORNER

Proof of Theorem O. Suppose that f e L' and that 8,(f, ) does
not diverge unboundedly on a dense subset of T, i.e. that we ean find an
open interval I such that

sup |8, (f, )] < oo for each z eI.
n

By Lemma 8.1 we can find a K > 0 and an open interval J such that
|8,(f, #)| < K for each n >1 and v eJ.

Define the characteristic function &, of J by &,(t) = 1ifted, &,(t)=0
otherwise, and set g = £,f. By the Riemann localization principle
(Lemma 8.3), 8,,(g, t) = 0 for all ¢ not in the closure of J and

limsup |8, (g, t)| = limsup|8,(f, )| <K for all ted.
1—»00 fn—00

- But g e L' so, by Lemma 8.2, |g(t)] < K for almost all ¢t € T. Thus
g € L* and so, by Oarleson’s theorem, 8,(g,t) g almost everywhere.
Using the localization principle once again, we obtain 8, (f, t) > g(t) = f(?)
for almost all ¢t eJ. Thus f cannot diverge almost everywhere and the
theorem is proved.
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