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Introduction. Given a set M and an equivalence relation R on M,
we denote by pr(x) the equivalence class of R containing # and by M /R
the set of all cosets pr(x), xe M. A well-known Godement theorem gives
a necessary and sufficient condition for M /R to have the structure of
a differentiable manifold such that the natural mapping pr: M — M|R
be a submersion. In the present paper we give a similar condition in the
category of differential spaces. In the cafegory of differentiable mani-
folds certain conditions should be satisfied in order that the natural
mapping pr be a smooth one. In the category of differential spaces assur-
ing special conditions for smoothness of the natural mapping is not
a problem. It is easy to prove (cf. [4] and [5]) that for a given differential
space (M, %) and for any mapping f of the set M into the set N there
is the smallest differential structure £ on N such that f is a smooth map-
ping of (M, ¥) into (N, @). The structure 2 is not determined by the
requirement of smoothness of the mapping f of (M, €) into (¥, 2). Simi-
larly as in the theory of differentiable manifolds such a uniqueness assures
the requirement for the pjp to be a submersion.

1. Preliminaries. For any function f and for any set A contained in
the domain-of f we denote by f| A and f[A] the restriction of f to A and
the image of A given by f, respectively. For any set B we denote by f~'[B]
the inverse image of B given by f, i.e., the set of all x of the domain of f
such that f(x)eB. Let M be any set and € an arbitrary set of real functions
defined on M. By 7, we denote the weakest topology on M such that
all functions belonging to ¥ are continuous. So, the set B is open in the
topology 7 if and only if for any point « of B there exist functions a,, ..., a,,
of ¥ and real numbers a,, b, ..., a,, b, such that

(1) weﬁai‘l[(ai;bi)]c B.

i1=1
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For every topological space X and for every set A of points of X
we denote by X | A the topological space induced on the set 4 by the topolo-
gical space X. For any set € of real functions defined on M and for any
set A contained in M we denote by €| A the set of all functions of the
form a|A, where a¢¥. By ¥, we denote the set of all functions f: 4 - R
such that for any point  of 4 there exist a neighbourhood U of x open
in 74, and a function a of € such that $|ANU = alANU.It is easy to
verify, making use of condition (1), that for any set A « M we have
T¢, = T¢ja = T¢|A. In particular, we obtain 7o, = 4.

We denote by sc¥€ the set of all real functions of the form

‘P(al(')a ceey am(')),

where ¢ is a real function of the class C*(R™), a;,..., a,eC and m is
an arbitrary positive integer. The ordered pair (M, ¥) such that €,, = €
= 8¢ ¥ is said to be a differential space (cf. [1] and [4]) or, shortly, space.
The set ¥ is called a differential structure for this space. This definition
is equivalent to that given by Sikorski in [3]. For any set € of real functions
defined on M, the set (sc%),, is the smallest among all sets €' such that
€ c ¢ and (M,¥') is a differential space. (M, (sc®)y) is called the dif-
ferential space generated by € (cf. [1] and [5]).

For any function f such that the set of all values is contained in M
and for any set ¢ of functions defined on M, we denote by €f the set
of all functions of the form aof, where ae¢¥. Let (M,, ¢,) and (MM,, €,)
be any spaces. By the Cartesitan product (M,, €,) X (M,, ¥;) we mean the
space generated by the set

C1Ppr [ My X My, U €,pry| M, X M,.

We denote the differential structure of this space by %, X €.. Then
we have

(2) €1 X €y = (se(€1pry | M, X MU €.pra| M, X M2))M1xM2

and
(M, €)X (Mg, €y) = (M X My, €, X €,).

Let (M, €) and (N, 2) be differential spaces. We say that a function f
maps smoothly (M, €) into (N, 2) which we note in the form

(3) f:(M, %) > (N, 2),

iff f maps the set M into N and, for any function g of 2, the function
pBof belongs to ¥. Mapping (3) is called a diffeomorphism iff f maps the
set M one-to-one and onto N and f~': (N, 2)—> (M, %). It is easy to
verify that if a function f maps smoothly (M, ¥) into (N, 2), then f is
a continuous mapping of the topological space t, into the topological
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space T4 and, consequently, if mapping (3) is a diffeomorphism, then f
s a homeomorphism of 74, onto 7,. Next, it is easy to prove that
f: (M, €) - (My, €;) X (M,, €s)
if and only if
priof: (M, ¢) > (M, %), =1,2.
Smooth mapping (3) will be called regqular at a point x iff there exist

a neighbourhood U of x open in 74, a space (M,, Cy), a point mye M,,
a set V open in 74, such that f[U] =« V, and a diffeomorphism

(4) @: (U, €y) X (Mg, Co) > (V, Dy)

such that po¢ = f| U, where ¢(u) = (u, m,) for ue U. Mapping (3) which
is regular at every point x of M will be called regular (or else — an immer-
sion). We say that a space (M, €') is lying regularly in (M, 6) iff M' <« M
and the inclusion
(5) id pp (M’a €') — (M, %)
is a regular mapping. We say that a set A < M is lying regularly in a space
(M, ¢) iff the space (4, €,) is lying regularly in (M, €).

Smooth mapping (3) will be called coregular at a point x iff there exist

a neighbourhood U of x open in 74, a set V open in 74 such that f[U] < V,
a differential space (N,, D,), and a diffeomorphism

(6) ¢: (U, €y) = (V, Dy) X (Ny, D)

such that pr,op = f| U. Mapping (3) which is coregular at every point z
of M will be called coregular (or else — a submersion). In [5] it is proved
that

1.1. If there exists a coregular mapping (3) such that the mapping
(7) f: (M,€) > (N, 2)

is also coregular and f maps M onto N, then (N, 2) is equal to (N, 2').
Consider now an arbitrary mapping

(8) f: M > N.

For any real function § defined on the set N we put f*(8) = fof.

Let ¢ and 2 be any sets of real functions defined on M and N, res-
pectively. In [5] it is proved that

1.2. If (M, ¥) and (N, 2) are differential spaces, then (f*~'[€])y is
the greatest set among sets 2’ such that (N, 2') is a differential space and
mapping (7) is smooth. Similarly, (f*[2]),, is the smallest set among sets €'
such that (M, €') is a differential space and the mapping f: (M, €’) — (N, D)
18 smooth.
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The space (M, (f*[2])y) will be called induced on M from (N, 2)
by mapping (8). Similarly, the space (N, (f*~'[¥])y) Will be called coin-
duced on N from (M, ¥) by mapping (8). For any set A contained in M,
the differentjal space induced from (M, ¥) by the mapping id,: A -M
coincides with (4, ¢,) and is called a subspace of (M, €) induced on A.
It is easy to check that

1.3. A set W s lying regularly in (U, €y), where U is an open set
in 14, tf and only if W < U and W is lying regularly in (M, ¥).

For any subset B of N and for any mapping (3), the subspace of
(M, %) induced on f~*[B] will be called the inverse image of the subspace
(B, Zp) of (N, 2) given by mapping (3). Now, we prove the following
lemma:

1.4. The inverse image of a lying reqularly subspace of (N, D) given
by a coregular mapping (3) is lying regularly in (M, €).

Proof. Let us consider any point z,¢f '[B], where B is lying regu-
larly in (N, 2), and set y, = f(x,). Then there exist a neighbourhood U
of x, open in 74, a neighbourhood V of point y, open in 7,5, a differential
space (N,, 2,), and a diffeomorphism (6) such that pr,op = f|U. From
the hypothesis that the space (B, Zz) is lying regularly in (N, 2) it
follows that there exist neighbourhoods V, and W of y, open in topolo-
gical spaces 7, and Tgyy Tespectively, a space (N,, 2,), a point n, of this
space, and a diffeomorphism

p: (Vi Dy) > (W, Dy) X (N1, 1)

such that W <« V, and y(w) = (w, n,) for we W. The set [V NV,] is
open in the topological space 75, X 75 . Then there exist a neighbourhood
W, of the point y, open in Tg, = To|W and a neighbourhood N . of the
point #, open in 75 such that the set W, x N 1 18 contained in [V N V,].
Setting V; = v~ '[W, x N,], we get the diffeomorphism
(9) v Vi (Vi Dy)) = (Wa, D)) X (N1, (2:)w)) s
where V| is open in 7, | V,. Next, let us put U’ = ¢ [V, X N,]. The set U’
is a neighbourhood of x, open in 7, and we have the diffeomorphism
(10) @l U (U, €y) = (V1, Dy)) X (No, D)
fulfilling the equality f| U’ = pr,o@|U’. From (9) we obtain the diffeo-
morphism y|V;xidy, of the space (Vi, 2y;) X (N,, 2,) onto the space
(11) (W1y 2w,) X (N1, (20))) X (Mo, D).

Denote by » the natural mapping of the set (W, X N;) X N, onto the

set (W, X No) X N;. Then » is a diffeomorphism of the space (11) onto
the space

(12) (W1, Dw)) X (Ngy Do) X (N1, (D1)y;)-
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Next, setting
(13) Q =9 [WiXN,]
and making use of (10), we get the diffeomorphism (¢ |Q X idN'l)“1 of the
space (12) onto the space (Q, %g) X (N}, (2,)n;). Setting
n = (p|U) o(p| VX idy,) lox"o(p|@ x idy)),
‘we obtain the diffeomorphism
1: (@, €o) X (N1 (21)n;) — (@) €o)

satisfying, as it is easy to verify, the condition %(u,n,) = u for ue@Q.
From definition (13) of the set Q it follows that @ = U nf~'[W,]. Since W,
is open in 75, @ is open in 7, where A = f~'[B]. Thus the mapping
idy: (A,¥%,) - (M, %) is regular at x,. Thus the space (4, %,) is lying
regularly in (M, %).

1.5. If mapping (3) is coregular and R is the set of all pairs (x, y)e M X M
such that f(x) = f(y), then the mapping

(14) pr | R: (B, (¢ X €)g) - (M, %)

18 coregular.

Proof. Let (x,, y,)eR. From the coregularity of mapping (3) it
follows that there exist a neighbourhood V of the point z, = f(x,) open
in 74, neighbourhoods U, and U, of the points z, and y,, respectively,
open in 74, spaces (N,, 2,) and (N,, 2,), and diffeomorphisms

(15) @2 (Uyy €y) > (V, 2p) X (N, 2))
such that f|U; = proe;, ¢ = 1,2. Set
(16) @:(®) = (f(x), by(x)) for zeU;, ¢ =1, 2.

Then we have h;: (U;, ¢y,) - (Nyy Zy), ¢ = 1, 2. Next, we set
17) 0(z,y) = (@, ko(y))  for (x,y)e(U,X U,) NR.

From .(16) and (17) it follows that the function 6 is one-to-one and

6= (x, 1) = (&, 7' (f(2),1)) for (x,t)eU,x N,.
Then the function 6 is a diffeomorphism of the differential space
(Tyx U) "R, (€ X €)v,xvpnE)
onto the space (U, €y,) X (N2, 2,). Equality (17) yields
pril(Uy, X U)NR = pry|(U, X N,)o80.

Mapping (14) is then coregular at the point (x,, y,). This completes
the proof.
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The following lemma will be useful in the proof of next lemma con-
cerning coregularity of a mapping f of a space (M, ¥) into the space coin-
duced from (M, €) by (3):

1.6. If function f maps set M into set N, (M, ¥) is a differential space,
sets U and f[U] are open in topological spaces v, and tu-14, respectively,
and f'|[f[U]] = U, then the equality

(18) (LT, (F € Dgw) = (FLUL (F1 D) [€0))wn)
holds.

Proof. Let us take any function gef*~'[¥]|f[U], i.e., 8 = y|f[U],
where y: N - R and yofe¥. Hence, we obtain

BofIU = yIflUIfIU = yof|Ue€|U < %y.
Then Be(f|U)*"'[€y]. Thus we have proved the inclusion
fE1fI0) < (FI1 O [ €y
Making use of this inclusion, we get

(f*' %)) oy = = (f*[¥] IFLU Dy = ((fl U)*- 1[%U])I[U]'

Now, let us consider any function Be(f| U)*~'[%y], i.e., 8:f[U] — R
and fof|Ue%y. Let y,ef[U]. Since f[U] is open in the topological space
Tje—1g), there exist functions p; ef*"'[¢] and real numbers a; and b,
t=1,..., m such that

m
Yoe Qﬂi—l[(ai; b)] = fLU].
i=
Then there exist a;, a;, b;, b; such that
(19) < a;<a; <Piy)<b <bi<b, it=1,...,m

There are real functions 7, infinitely differentiable on R, such that
7;(t) = 1 for te(a;'; b;), and 7;(¢) = 0 for te R —(a;; b;). Setting

m
n(y) = [ [n:(B:(y)) for yeN,
=1
we obtain the function 7: N —~ R such that
nof = [ [ nioBiof <,
i

because 7;0fe¢%, and » fulfis conditions 7(y) = 1 for yeV, where
V =67"[(e;;6{)] and 75(y) =0

for

YeN — ﬂ ﬂz n
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Put
A(y) = n(¥)B(y) for yef[U],
0 for ye N —f[U].
Then we have the equality
(20) AV =B|V.
Let us set

W = N — ()67 [<als ).

Since functions f; map the topological space 7.-14 into R con-
tinuously, the sets B;'[(a;; b;>] are closed in it. Therefore, the defined
above set W is open in t.-14. Evidently, we have W Nnf[U] = N.
Hence

FUWIU U = Wlu U] =f'[N] = M.

In other words, sets f~'[W] and U make a covering of M open in 7.
Notice that Aof|U = nof|U-Bof|Ue€y, because nof|Ue¥y. Defini-
tion of 1 yields A(y) =0 for ye W. Hence A(f(x)) = 0 for wef '[W].
Thus loflf‘l[W]e%,_l[W]. Therefore, we have Aofe?. In other words,
Aef* 1[C]. From inequalities (19) it follows that y,¢V, where V is open
in 7j.-14; and contained in f{U]. According to (20), the function g belongs
to the set (f* '[¢])yy;- Thus we got the inclusion

(FIO) ' [€u] < (f 7 €Dy

Then (18) is fulfilled. As an easy consequence of Lemma 1.6, we
get

17. If f: M - N, (M, ¥) is a differential space, O is a covering of M
open in vy such that all mappings

(21) f1U: (U, 6y) > (FLUL ((f1 0)* " [€u])y)

are coregula:r, FLU] is open in tp-14), and f‘l[f[U]] = U when UeD,
then

(22) f (M, €) (N, (f[€])n)
8 coregular.

2. Coregularity of natural mapping of an equivalence relation. Let
(M, C) be an arbitrary differential space and R be any equivalence rela-
tion. By (M, €)/R we denote the differential space (M /R, (px '[€1)mr)
where pp is the natural mapping defined by R. In this section we prove
the following theorem:
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2.1. The mapping
(23) pr: (M, €) —~ (M, %)/R
18 coregular if and only if the following conditions are fulfilled:

(a) The mapping pr,|R: (R, (€ X €)g) - (M, €) is coregular.

(b) For any point xge M there exist a neighbourhood U of x, and a core-
gular mapping

(24) $: (U, €y) > (W, €p)
such that
(25) Wnpgr(u) = {s(u)} for uelU.

Proof. Necessity. Condition (a) is a direct consequence of Lemma
1.5. Let us take any z,¢ M. Then there exist a neighbourhood U of z,
open in 74, a neighbourhood V of the point 2, = pg(x,) open in the topo-
logical space t¢/R, a differential space (N,, 2,), and a diffeomorphism ¢
of the space (U, €y) onto the space (V, Zy) X (N,y, Z,) such that pp|U
= pryop. Let us set W = ¢ '[V X {n,}], where ¢(x,) = (24, o), BoeN,
and s(u) = <p‘1(pR(u), no) for ue U. It is easy to see that the function s
fulfils condition (25). Setting

p(u) = (s(w), pra(p(w))) for uel,
we obtain, as it is easy to verify, the diffeomorphism
y: (U, €y) > (W, €p) X (Nyy D)

such that pr,oy = s. Then function s gives a coregular mapping of the
space (U, €y) onto (W, €y,). Condition (b) is thus satisfied.

Before the proof of sufficiency of conditions (a) and (b) we prove
two lemmas.

2.2. If an equivalence relation R satisfies conditions (a) and (b) and
there exists a set U open in v, and such that

(26) pz'[pr(U]] = M,
and if the matural mapping
(27) PRyt (U, €y) > (U, €y) /Ry

of the relation Ry = RN (U X U) is coregular, then mapping (23) is core-
gular.

Proof. If Pry(u) = pp, (w'), u,u'cU, then pgp(u) = pgr(w’). Then
there exists exactly one mapping

(28) h: U/Ry — MR
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such that hopg,, = pr| U. Making use of (26), it is easy to see that map-
ping (28) is one-to-one and onto. Let (M /R, 2) be the differential space
coinduced in the set M /R from the space (U, €y)/Ry by mapping (28).
Hence we obtain the diffeomorphism

(29) h: (U,¥¢y)|Ry - (M|R, 2).
Let us set k = b~ 'opg. It is easy to check that
(30) kopr, [ (UX M)NR = pgp opr,[(UXM)NR.
From (a) and symmetry of R it follows that the mapping
pr. | R: (R, (¥ x"f)R) - (M, %)
is coregular. Then also
pro[(UXM)NR:((UXM)NR, (¢ X €)wxinr) = (M, €)

is coregular. Equality (30) and coregularity of (27) yields (cf. [5]) core-
gularity of k: (M, ¥) - (U, €y)/Ry.

The mapping pg: (M, ¥) - (M/R, 2) is then coregular. Hence we
have the identity of spaces (M, ¥)/R and (M /R, 2). Thus (23) is core-
gular.

2.3. If a set U open in vy i8 such that there exist a set W < U and
a coregular mapping (24) satisfying (25), then the natural mapping (27)
18 coregular.

Proof. From (25) it follows that if s(u) = s(u'),u,u €U, then
Pr(u) = pr(u’), and 80 pg (u) = pg,(u’). Hence we obtain the mapping

(31) I: W —>U|/Ry
such that
(32) . los = pg,-

If we W, then we W Nnpgp(w). So, by (25), s(w) = w. Therefore, if
l(w) = l(w'), w,w'e W, then, by (32), pr(w) = pr(w’). Hence and from
(25) we get s(w) = s(w'). Therefore, w = w’. Let (U/R;, 2) be the space
coinduced from (W, %y) by mapping (31). According to (32), we get
the coregular mapping

Pry- (U, ¢y) > (U|Ry, 2).

Then (U/Ry, 2) = (U, €y/Ry). Hence (27) is coregular.
Now we shall finish the proof of Theorem 2.1.

19 — Colloquium Mathematicum XXVI
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Sufficiency. Let us suppose (a) and (b). From lemma 2.3 it follows
that for every point x of M there exists a neighbourhood U, of z open
in 74, such that

(33) Pry: (Usy €ur) > (Us, 60r) Ry,
is coregular. Let us set
(34) U, = pg'|pr(U;]l] for we M.

By a simple verification we infer that
(35) U, =pr,[RN (U, x M)].

Condition (a) yields openness of U, in 74,and this, together with equality
(34), leads to

Uz = Pry, [Pry [U:]]
and to a coregular mapping
pr, | Ry, : (Rny (Fy, X (gUz)RUz) - (U, €y,),
because for every set U contained in M we have

(X C)uxv = (CuX€r)uxv-

Equality (34) yields U, = pz'[pz[U,]]. Hence pz|U, = Pr,,_ and
from lemma 2.2 we get the coregular mapping

Pr| U (Ug, €y,) > (Us, (gUx)/RUx'

Since lemma 1.7 yields coregularity of (23), the proof of Theorem 2.1
1s completed.

Let A(N) = {(z,x); vre N}, where N is a set. Note that for every
equivalence relation R on a set M we have the equality

= (PrX pr) " [A(M[R)].
As a corollary of 1.7, we get

2.4.If a set A(M|R)1is lying regularly in a differential space (M, €)/R X
X (M, ¥)/R, then the set R is lying regularly in (M, €)X (M, %).

3. Comparison of regularity and coregularity of mappings of differ-
ential spaces and of manifolds. Let (M, ¥) be a differentiable manifold
which can be meant as a differential space locally diffeomorphic to a Euecli-
dean space (cf. [4]). It is easy to see that if (3) is a regular (respectively,
coregular) mapping, then (3) is weak regular (respectively, weak core-
gular), i.e., for any point ¢ of M there exist a neighbourhood U of x open
in 74, a neighbourhood V of f(x) open in 7,, and a smooth mapping
o: (V,2y) > (U, €y) such that oof = idy (respectively, fooc = idy). If
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(M,¥%¢) and (N, 2) are manifolds, then weak regularity (respectively,
weak coregularity) is necessary and sufficient in order that (3) be an
immersion (respectively, a submersion) (cf. [2]). Then, in this case, the
concept of a regular mapping coincides with the concept of an immersion
of differentiable manifolds. Similarly, the concept of a coregular mapping
coincides with that of a submersion of differentiable manifolds. In par-
ticular, the concept of a submanifold (M, €) coincides with that of a ma-
nifold lying regularly in (M, %).

In [2] there is a proof of Godement’s theorem on the division of
a differentiable manifold by an equivalence relation R. This theorem
says that

There is a manifold Y such that the mapping pp: X — Y is core-
gular if and only if (i) B determines a submanifold of X x X and (ii) pr,
maps R, treated as a submanifold of X X X, coregularly into Y.

The proof in [2] holds for manifolds which are analytic with respect
to any normed field. But the character of this proof is such that it may
be verbally repeated for real manifolds of the class C*(R). It is evident
that if Y is a differentiable manifold, then the diagonal A(Y’) of the set
Y’ of all points of Y is lying regularly in Y X Y. From 2.4 it follows that (i)
holds, and condition (ii) coincides with (a). Condition (b) is a consequence
of (i) and (ii) (cf. the proof of Godement’s theorem in [2]).
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