COLLOQUIUM MATHEMATICUM

VOL. L 1985 FASC. 1

PARTITIONING SPACES INTO HOMEOMORPHIC RIGID
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Let X be a topologically complete (separable metric) space which is
dense in itself and which in addition admits a fixed-point free involution.
Then X can be decomposed into two sets A and B such that A is-rigid, 4 is
homeomorphic to B, and 4 contains no uncountable compact subsets. If X is
a Peano continuum in which no countable set separates a nonempty
connected open set, then X has a partition as above iff X admits a fixed-
point free involution.

1. Introduction.

All spaces under discussion are separable metric.

While discussing the paper [6] with Professor A. V. Arhangel’skii, the
following question was raised: does there exist a homogeneous space which
can be partitioned into two homeomorphic rigid subsets? (a space is called rigid
if the identity is the only autohomeomorphism). In this note we will answer
this question in the affirmative.

THEOREM 1.1. Let X be a topologically complete, dense in itself space. If
X admits a fixed-point free involution, then X can be partitioned into two
homeomorphic rigid sets which in addition do not contain any uncountable
compact subset.

(An involution of a space X is an autohomeomorphism h: X — X with
h? =id.)

One might think that an involution having no fixed-points is a rather
strange hypothesis to obtain such a decomposition. This is not true, as the
following result shows.

THEOREM 1.2. Let X be a Peano continuum with the property that no
countable subset of X separates some nonempty open connected subset of X.
Then the following statements are equivalent:

(a) X admits a fixed-point free involution,

(b) X can be partitioned into two homeomorphic rigid subsets which do
not contain any uncountable compact subset.
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Our construction is inspired by a method originally due to Kuratowski
[4] which was later rediscovered by de Groot ([2]).

An unpleasant aspect of our construction is that we use transfinite
induction and the Kuratowski-Zorn Lemma. For this reason we will also
include an explicit construction of a partition of S! x R into homeomorphic
rigid subsets.

2. Preliminaries. A cardinal is an initial ordinal and an ordinal is the set
of smaller ordinals. ¢ denotes 2"°.

The following classical result, due to Lavrentieff [6], will be important
in our construction.

LEMMA 2.1. Let X and Y be topologically complete. If A< X and B Y
and if h: A — B is a homeomorphism, then there are Gj-subsets A’ < X and
B' < Y such that A < A’ and B = B’ while moreover h can be extended to a
homeomorphism h': A’ —» B'.

The domain and range of a function f will be denoted by dom(f) and
range(f), respectively. Let X be any (separable metric) space. Observe that
the collection

# = {f: dom(f) and range(f) are G;-subsets of X and
f: dom(f) —» range(f) is a homeomorphism]
has cardinality at most c.

3. Proof of Theorem 1.1. In this section we will give a proof of Theorem
1.1. To this end, let X be a topologically complete, dense in itself space and
let # be as in Section 2. Put

9 ={fe#: 3AD cdom(f), |D| = ¢ and f(D)nD = Q}.

Since |4] < ¢, we can enumerate 4 by {f,: a < ¢}. Let h be a fixed-point free
involution of X. By transfinite induction, for every a < ¢, we will construct a
point a,edom(f,) such that

(1) a, ¢ {fp(ap)3 f<alu {h(a,,): B<al,

) fila)¢ lay: B <o} (h(fy(ap): B <al.

This construction is a triviality. Suppose that we have constructed the
points a; for all f <a. By assumption, there is a subset D < dom(f,) of
cardinality ¢ such that D n f,(D) = @. Since |a| < ¢, we can therefore find a
subset D, = D which is also of cardinality ¢ and which misses {fg(az): B
<a}u {h(ag): B <a}. Since f, is one-to-one, by the same argument, we can
find a subset D, =D, of cardinality ¢ such that f,(D;)n({az: B

a} U [h(fp(ap): B <a})=@. Take any point xeD, and define a, = x.
Since h has no fixed-points, a, is clearly as required. This completes the
induction.
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Now put
F=la: a<culh(f(a) a<c}.
In addition, let

G = X \(F u h(F)),

and let G'= G be a set with the property that for any xeG we have
|G’ n {x, h(x)}| = 1. The existence of G easily follows from the Kuratowski-
Zorn Lemma. Let A =Fu G’ and B = X\ 4.

LemMMA 3.1. If xe X then |A N {x, h(x)}] = 1.

Proof. It clearly suffices to show that Fh(F)= @. This easily
follows from (1) and (2) and from the fact that h is an involution. O

CoRrOLLARY 3.2. A is homeomorphic to B.
Proof. Clearly, h(4) =B and h(B) = A. O

Lemma 33. If K< X is a Cantor set, then KnA# @ and KnB
# Q.

Proof. Let K, and K, be disjoint Cantor sets in K and let f: K,
— K, be any homeomorphism. Then, f €% and consequently, by construc-
tion, A ndom(f) is nonempty. Therefore, A intersects K,. By (1) and (2),
f(K,) intersects B. We conclude that also BNnK # Q. O

Since any uncountable compactum contains a Cantor set, the following
is immediate.

CoroLLARY 3.4. A and B do not contain uncountable compact subsets. As
a consequence, both A and B are dense in X.

LEMMA 3.5. A is rigid.

Proof. Suppose, to the contrary, that h: A - 4 is a homeomorphism
which is not the identity. By Lemma 2.1 we can find G,-subsets S and T in
X which both contain A while in addition, » can be extended to a
homeomorphism h: S - T. It is clear that there is an xeS such that
h(x) # x. Let C be a closed neighborhood of x in S such that C nh(C) = Q.
By Corollary 3.4, A is dense in X and therefore, so is S. We conclude that S
is topologically complete, being a G,-subset of X, and dense in itself, being
dense in X. Therefore, C must have cardinality ¢. Define f = h|C and notice
that e, say, f = f,. Observe that a,e 4 nC and that. by (1) and (2) and
by the definition of A, f,(a,)¢ A. This contradicts the fact that h extends
h. O

4. Proof of Theorem 1.2. Using an idea in Curtis and van Mill [1], in
this section we will give a surprisingly simple proof of Theorem 1.2.
To this end, let X be a Peano continuum with the property that no
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countable subset of X separates some nonempty open subset of X. Suppose
that {4, B} is a partition into rigid homeomorphic subsets of X which do
not contain uncountable compact subsets.

LEMMA 4.1. Let U < X be nonempty, connected and open. Then U N A is
connected.

Proof. Suppose not. Let U,, U, be a partition of U n A consisting of
nonempty open (in A) subsets of A. There are open subsets Uy, and U in X
which are contained in U so that Uin4A=U; for i=0,1. Let K
= U \(Upu U}). Observe that K separates U and that K is contained in B.
Since K is clearly o-compact, it has to be countable, since B does not contain
any uncountable compact subset. We conclude that some countable set
separates U, which contradicts our assumptions on X. O

Now let h: A - B be any homeomorphism. We claim that h can be
extended to a homeomorphism h: X — X. Take xeB and let {U,}2, be a
sequence of connected open neighborhoods of x in X such that for all n,

(1) diam(U,) < 1/n,

()] Upe1 = U,.

By Lemma 4.1, U,nA is connected for all n, and consequently, so is
h(U, A). Let C = ﬁl h(U, A)~ (the closure is taken in X). Observe that

C is a decreasing intersection of continua, hence must be a continuum itself,
which obviously is contained in X\h(A) = X\B = A. Since A, by assump-
tion, cannot contain nontrivial continua, C must contain precisely one
point. Let this point be denoted by f,. Then the function f: X —» X defined
by

L if xeB,

f(x)={h(x), if xeA,

obviously defines a continuous extension of h. In the same way we can define
a continuous extension g: X - X of h™!. We conclude that h can be
extended to a homeomorphism h: X — X. First, observe that h has no fixed-
points, since h(4) = B. Second, h is clearly an involution, since h*| A is an
autohomeomorphism of A4, and hence, by rigidity, must be the identity on A.
Since moreover A4 is dense, we conclude that h> must be the identity itself.

5. A partition of S' x R. In this section we will show that there is an
explicit construction of a partition of the ordinary cylinder S! x R into two
homeomorphic rigid sets.

For a coordinate system on S! we use the reals modulo 2n. We have a
fixed-point free involution h on S xR if we define:

v h(s,r)=(s+n,r) for all 0<s<m,
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and
h(s,r)=(s—mn,r) for all n <s < 2n.
Put
Ag={(5,7: 0<s<m; reR}
and
By ={(s,r): n<s<2n; reR},
respectively.

We subdivide B, into a countable dense union B, of treelike spaces (= a
connected subspace of a dendron) and a dense G; set B,. If we put h(B,)
= A, and h(B,) = A,, then obviously, A = A, U B, is homeomorphic to B
=B, U A,.

For the construction of B, and B, we adapt the techniques of de Groot
and Wille [3], and so we obtain rigidity of both B, and B,.

Let {¢;}2, be a countable collection of disjoint directions in the plane,
such that for every ie N and every straight line / in the direction ¢, there is
at most one point on [ with both coordinates rational.

We construct B, as the union of a countable disjoint collection of open
straight line segments {H;}2, such that for all i, H; has direction ¢,. On
every segment H; we will define a countable dense set D;. Maximal connected
unions of H;s will be treelike spaces T, without endpoints.

Let D, be the set of all points (s, r)e B, such that both s and r are

rational. The union () D; will be called D~. We will index D~ according to
i=0

the conventions:

D~ =1{d,: neN,n>1},
and
if n=k?2' then d, is the kth element of D,.

We proceed by induction on the index n of D~.

Start. d,eD,. Let C; < B, be a closed circle with midpoint d, and
radius r; < 1. Define the two sets H; and H, to be the open segments of
length r, which emerge from d, in the direction ¢,, respectively ¢,. Let S,,
respectively S,, be two closed circle sectors of C; such that H, < IntS,,
H, cIntS,, S, nS, ={d,} and Q xJ N 0S; = }d,} where Q denotes the set
of rationals and 0 the boundary operator. Define D, to be a countable dense
subset of H, and D, to be a countable dense subset of H,.

Step. Suppose that C,, d,, H;, S; and D; are defined for each
1<m<nand i <in(n+1). If n=k2' then | <in(n+1) and hence d, is
well-defined. We can define a closed circle C, with midpoint d, which
satisfies the following properties:
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(1) C,nH;=Q for i#!land i<3n(n+1),

(2) for all i <in(n+1), if d,eS; then C,cIntS,
(3) for all i <in(n+1), if d,¢S; then C,nS; =0,
4 the radius r, of C, satisfies r,<n"? and C, < B,.

Next we define the n+ 1 open segments H; of length r, in the direction ¢; for
in(n+1) <i < §n(n+3). On each of those H; we chose a countable dense set

D;, and around each H; we define a closed circle sector S; of C, with the
following properties:

(5) for dn(n+1) <i <j<3in(n+3) we have S;n S, = {d,},

(6) for sn(n+1) <i < jn(n+3) we have 8S;n(Q xQ) < {d,},
(7 for j <3n(n+1) <i<in(n+3) we have H;nS; < {d,},

(8) for 4n(n+1) <i <4n(n+3) we have H; c IntS,.

Notice that if n = k2' and [ > 1 then H; is a branch of some treelike space
which emerges from H,. Define

N~ =!meN: 3leN: I2QI-1) < m < (I+1)(2I-1)},

ie, meN~ if and only if H, emerges from a point of D,.

Next we take B, to be the union of all the H;’s. Then B, can be seen as
the union of a countable discrete collection {T,,: me N~} of treelike spaces,
in which T,, denotes the treelike space with initial branch H,,.

From induction conditions (2) and (8) it follows that T, < S,,; from (2),
(3), (6) and (7) we obtain that dS,, ~B, = @ and hence S, N B, is a clopen
subset of B, for every me N™.

(@ T,=B;nS,0nN\IBy\S;: keN~, k >m].
It follows immediately that T, is a component of B,.

(b) The diameter of T,, tends to O if m — oo, and so does the diameter
of an arbitrary sector S,.

(c) The set D™\ D, is dense in B, and each d, in T,, is a cutpoint of T,
which cuts T, into n+3 disjoint subcomponents.

It follows immediately that By is rigid. Moreover, if we consider B, U 4,
= B, L h(B,) then it is clear that no homeomorphism of B, U 4, can send a
point of B, to a point of A, because B, is a first category space and 4, is a
Baire space. So we only have to show that B, = h(A,) is rigid. To this end
we make the following observation.

(d) No point outside D, is in the closure of more than one T,,. This
follows directly from the induction conditions (3) and (5), since each T,, is
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contained in the interior of its S,, and its circle C,.In the same way it follows
that even subcomponents of T,,\!d,] cannot have boundary points in
common.

We will show the rigidity of B, by proving that within every neigh-
borhood U, of pe B, there exists a connected neighborhood ¥, of p such that
even V,\{p} is connected for every pe B,\D,. For d,e D, we have that if V,
is a connected neighborhood with diameter less than r, then V,\ {d,} consists
of precisely n+1 components. Since D, is dense, the rigidity of B, follows.

Let F =(B,\Do)n( U ¢cI(T,)) ie., the points in the closures of single

meN "~

trees. Let G = B,\(Do U F). We show our claims independently for peG, for
peF and for peD,.

Case (i). peG. Let U be an open circle neighborhood of p with
midpoint p and radius &. The diameter of T, is larger than 3¢ for a finite
subcollection M~ of N~ and so only a finite number of nowhere dense sets
T,, intersect both the boundary of U and the inner circle U~ = {x: o(x, p)
< 4¢}, where g is the ordinary distance function. We obtain a neighborhood
of p if we consider the component of p in W, =U\( U T,). If W, does not

meM ~

contain a connected neighborhood of p in B, then there is a clopen subset
K, containing p in W, B,. The boundary of K, with respect to B, must
then contain a closed noncontractible continuum which misses the boundary
of U. This is impossible since the components of B, are treelike and do not
contain noncontractible subcontinua.

Case (i) peF. This case is similar to the previous one but now p is
not in the interior of W,. Also the connected neighborhood will not fall apart
by deleting p since the only subcontinua of B, U {p} containing p are treelike,
since observation (d) guarantees that the components of B, U {p} are treelike.

Case (iii)). peD,, say p=d,. In this case a sufficiently small neigh-
borhood of p is subdivided into open sectors by the H,, emerging from p.
Instead of a single set W, we now take the component of p in
U\U {T,: 4n(n+1) < m < jn(n+3)}. This set is a basic open neighborhood .
of p which falls apart into n+1 parts when p is removed.

Since each pe D, can only be mapped onto itself by a homeomorphism
of B, onto B, and since D, is dense, the rigidity of B, follows.

Therefore, A, = h(B,) is rigid and also B, uU A, is rigid. This shows all
the required properties of the example.

6. Remarks. The results in this note do not imply that spaces such as
the real line R, the closed unit interval I, or I can be partitioned into two
dense homeomorphic rigid subsets (P 1286). It would be interesting to know
whether this is possible or not, especially for the real line. Observe that
Theorem 1.2 shows that for I?> a method such as in Section 3 does not work.
We don’t know whether a geometric argument does the job.
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Added in proof. Independently, S. Shelah and F. van Engelen have shown
that the real line R can be partitioned into homeomorphic rigid parts.
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