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The purpose of this note is to point out a class of problems which
are best handled with random, i.e., Monte Carlo, strategies.

Let 0 = {0,1}" be the Cantor space of w-sequences of 0’s and 1’s,
with the usual product measure y; i.e., for any set A = C we let

p(d) = 2{ D 0, [2": (24, @y, ...) € 4},

n=0

where 4 is the Lebesgue measure in the interval [0,1], whenever the
right-hand side exists.
For any ¢ = (%, #;,...) €0 and n < o we let

oIn = (Do ...y ®p_,)
and, for any u-measurable 4 < O,
p@ln,A) =pflyeA: yin =2 n}
A point p e C is called of density 1 for A if
(1) lim 2"u(p | n, 4) =1.

n—>00

Recall the density theorem for C.
THEOREM (Lebesgue). For every u-measurable set A < 0 we have

pi{p € A: p satisfies (1)} = u(4).

The game. Given any u-measurable set A = O with u4(4) > 0 we have
to choose the consecutive coordinates p,, p,,... of a point p € 0 8o as
to satisfy (1), however 4 is not known and every choice p, has to be
decided on account of the values u(x | », A) for a finite set of pairs , n.

Different classes of strategies for this game may be regarded as
admissible (even if not successful).
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(a) Strictly bounded straiegies. p, is decided only on account of
P((Po’ ooy Pmeyy 0)y A) and I‘((poa very D1y 1)y A).

(b) Bounded strategies. There exists a function n: w — w such that
P, is decided on account of the 2"™ values u (x| n(m), A).

(¢) Unbounded strategies. The collection of the values u(z| n, A)
necessary to decide p,, may depend on those values in this sense that the
decision to stop collecting them and computing p,, may depend on the
values hitherto collected.

(d) Random strategies of each of types (a)-(¢). The algorithms for
computing p,, may use generators of random numbers.

Now we prove some facts about each kind of strategy.

1. PrOPOSITION. Let S, be the sirictly bounded strategy which chooses
Pm =0 if
l‘((Po’ ceeyPm-150),y A) = .“((PM veoy Pmo1y 1)y A)
and p,, = 1 otherwise. Then

(2) mli_ﬂ2"‘#(p fm,A)> u(4d).

The proof is obvious.
Unfortunately, the example which follows shows that neither S, nor
any other bounded deterministic strategy can secure more than (2).

2. Example. For every bounded strategy 8 and 0 < a < 1 there exists
a Borel set A < C such that u(A) = a but 8 yields only

(3) lim 2™u(p I my, 4) = a.

m-»co

Proof. Let n: w — w be the bound for 8 (see (b)). It is easy to con-
struct a Borel set A < C such that u(A) = a and, if p [ m has been chosen
by 8, then

2™ y (2] n(m), A) = a
whenever [ m = p | m. Thus 4 and § yield (3).

3. THEOREM 1. Let 8, be the following wunbounded deterministio
strategy. We choose a sequence u(Ad) = ay< @, < ... with a, — 1. Then 8,
oonstructs a sequence of initial segments p [ m, of p in the following way.
Let my = 0. If p | m,, is already consiructed and satisfies

(4) 2™ u(p | my, A) > ay,
then 8, searches for an exviension p | m, ., of p | m, such that

(5) 2%u(ptn,A)>a, for all n with m; <n < my,,
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and

(6) 2mk+l.“(P P Myyqy A) 2 6y,

Then 8, ts always applicable and 8, seoures (1).

Proof. It is obvious that if 8, is applicable, i.e., the search for the
extension p | m, ., satisfying (5) and (6) always succeeds, then 8, secures (1).
Thus it is enough to prove that if p [ m, satisfies (4), then there exists
an extension p [ m,, satisfying (5) and (6). Let, for any » €  and 7 < o,

Veln) ={yeC: yln=o|n}
and
M, =V(pIm)n{rel: 2"u(ow | n, A) > a, for all n>m,}.

It is enough to prove that
(7 u(M;) >0

since then, by the Lebesgue density theorem, M, has points of density 1
and long enough initial segments of such points will satisty (5) and (6).
Suppose, to the contrary, that u(M,) =0. Let N, = V(p | m;)—M,.
Then u(N,) = 2 * and for every # € N, there exists an n < o such that

(8) 2"u@wln, A)<a, and n>m,.

For any x € N, we let n(x) be the least n satisfying (8). Notice that
the sets V(x| n(x)) with © € N, are either equal or disjoint. Hence we
have

2@ =2 and  w(plm,d) = Yualn(), 4),

where both sums extend over all finite sequences @ [ n(x) with x e N,.
Then, by (8), we have

p@ I my, 4) < D'27"@a, = 27 e,

which contradicts (4). This contradiction demonstrates (7) and our proof
is completed.

The strategy of Theorem 1 has the defect that it may force us to
gather an enormous amount of data. It is surprising that a random strat-
egy can save all this trouble.

4. THEOREM 2. Let R be the strictly bounded random strategy which,
given Pgy ...y Pp_yy Chooses p,, = 0 with probability

oo 0 A
(9) 7, = #(Poy +++y Pru1y 0) )
i‘((.po’ vory Pmoth A)
and p,, = 1 with probability 1 —x,,. (Notice that R secures its own appli-

cability, i.e., u(pl m, A) > 0 for every m < w, with probability 1.) Then
R secures (1) (and p € A) with probability 1.
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Proof. Let p be a random variable with values in A which is uni-
formly distributed over A, i.e., for every u-measurable set X = 0 we
have

p(ANnX)
p(d) -
Notice that for this p, whenever u((Pos .- s Pm_1)y 4)> 0,

Pr(pm =0 | Poy ""pm-l) = Ty

a8 in (9). It follows that the strategy R defines the same uniform probability
distribution (10) for p. Thus Pr(p € A) = 1 and, by the Lebesgue density
theorem, (1) holds with probability 1.
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