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A THEOREM IN ASYMPTOTIC NUMBER THEORY

BY

ALEKSANDAR IVIC (BELGRADE)

Let A (x) denote the number of integers of the form pr? (p a prime)
less than or equal to x. Cohen proved in [1] that

i b
1 A =
(1) (@) 6logx +0(log’w)’
and Schwarz [6] sharpened this estimate to
(2) A@) == chlog"‘“a;+O(mlog‘“'zw),
k=0

valid for every natural » with ¢, = {(2) = =2/6, ¢, = (—2)*¢¥(2) +ke,_,
for k > 1, the O-constant depending on n. The aim of this paper* is to
prove a theorem which contains (2) as a special case and to give some
applications to the number of integers not exceeding # of a certain form.
To do this we shall deal with slowly oscillating functions. A function L ()
is called slowly oscillating (or slowly varying) if it is positive, continuous
for # > z, and for every ¢ > 0

_L(on) _
:22 L(x) =1

Karamata [2] gave a canonical representation of these functions
in the form

(3) L(z) = ao(z)exp [ft“d(t)dt],

where a > 0, o(x) > 1, d(x) > 0 a8 £ > oo, o and & being continuous for
2 > x, (for other useful properties see [7]). These functions are of a great
number-theoretic significance, since most of the functions like log™z,
loglogx, exp [ — clog’z] (for b < 1) that appear in the error terms of asymp-
totic formulas for arithmetical functions are slowly oscillating. Now we
are able to formulate the following

* This research was supported by the Institute of Mathematics in Belgrade.
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THEOREM. Let @, >1 and A = {a,};_, be an increasing sequence of
integers for which
(a) for some 0 < c¢<1,

A@) = D 1=0().
agz,aed
Let by >2 and B = {b,}x., be another increasing sequence of integers
such that
(b) ¢f a;b; = ayb; for some i, j, k, and 1, then ¢ = k and j = 1;
(c) for C > 0 and m > 0,

B(@) = D 1=C [(log ™t)dt+0(aL(x)),
b<z,beB 2

where L (x) t8 a slowly oscillating function that i8 non-increasing for x large
enough and satisfies L(x) = o(log™™z) as x— oc.

If N(x) denotes the number of imtegers mot greater than x of the form
n =ab, acA, beB, then

(4) N(z) = CzF(x)+ O (2L (»)),

where

F(z) = [A@W)t(logzjt) ™dt, y = [L(@)]"Y,

8o that F(x) t8 a slowly oscillating function asymptotic to log~™ x.
If (a) and (b) hold, but instead of (¢) we have
(c’) for some integer n > 0,

B(z) = C [(log~™t)dt+ O(zlog™™ "),
by

then
n
®)  N@)=0s), (m +;’:— 1) Dy log™™ *z 4 O (xlog™™ ""'a),
k=0
where

Dy = Y a,/n, D, =(—1F"(1)+kD,_, for k>1,

n=l

F(s) = S’a,m",

n=1

a, =1if n €A and a, = 0 otherwise.
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- Proof. The decomposition n = ab, a € A, b € B (if it exists) is unique
by (b). Thus, if a and b denote elements of A and B, respectively, then

N (x) =ab2<;1 =3 31+ 3 31— 311 =8,+8 -8,

a<y b<z/a bz a<z/b asy b<z
where ¥y > 1 and yz = x, and
8; = A(y)B(z) = O(y°zlog™"2),

8, = O(w‘Zb‘c) — wc-O(B(z)z'°+c f B(t)t“’"dt)) — O(y°zlog—™2),
b<§ bl
z/a

8, = Y B(z/a) = 2[0 ) (log‘"‘t)dt+O(ma"L(m/a))]
a<y a<y b

z/a

=c) [ (log""t)dt—l—O(w Za‘lL(w/a)).
a<y

asy bl

If we set
zlu

H(z,u) = [ C(log~™t)dt

b
and note that L(z) = L(x/y) > L(z/a) since L(x) is non-increasing, then
v
8, = 2H(w,a)+0(wL(z) Za‘l) = [ H(z,t)dA(t)+0(oy° " L(2).
a<y a<y @)—-0
Partial integration gives

v v
[ H(z,0)dA(t) = H(z,y)A(y)— [ A(W)aH (1)

al-o a)
z v
= C [(og™™t)dt-0(y°)+ Cx [ A (1)t (log™"z/t)dt
b a)

= CzF(z)+ O(y°zlog~"2),
where

F(z) = fA (1)t~ % (log=™z[t)dt.

a1

Therefore, we have
(6) N () = CxF(z)+O(y°zlog~™2) + O (xy° ' L(2)).

If x is sufficiently large, then 1 < y < # for y = [L(2)1¢"" and (4)
follows. From (3) it is seen that y = O(a") for every £ > 0, so that y is
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small when compared with z, and CzF'(x) may be considered as a good
main term approximation to N (z). If one chose another value of y, say
y = 2% (0 < a < 1), then (6) would give

N(x) = CoF(x)+O(a'CMlog™™g).,

But F(x) would then have a much larger interval of integration and
the error term would be incorporated in F (). It is also natural to expect
the error term for N (z) not to be smaller than the error term for B(x)
which is precisely O xL(x)). F(x) has an asymptotic expansion in terms
of negative powers of logx (which will be shown in proving (6)), but since
a finite sum of such powers may give an error term greater than O (zL(x))
when L(x) is small, it seems best to leave (4) as it is. F(x) is in any case
a slowly oscillating function asymptotic to log=™z. Since log™™ x is slowly
oscillating, and a function asymptotic to a slowly oscillating function
is slowly oscillating, it is enough to show that

Y o)
(7) lim [ A(t)t*(logw/(logaft)™dt = [ A(t)¢*dt,

r—>00 a; a;

the last integral existing since A(f) = O(#°), 0 < ¢< 1. Note that y is
a slowly oscillating function tending to oo as « tends to co. Then it follows
from (3) by using the de I’Hospital rule that

lim(logy/logz) = 0.
Z—>00
Thus, for a, <t<y,

lim (logx/(log#/t))™ = 1 uniformly in ¢,

=00

and so for z sufficiently large and for every ¢ > 0 we have
v oo
| [ At (loga/(logzt))™dt — [ A (t)t"dtl
a a

v [.] -] .
< [A(¥)t?|(logz/(logat))™ —1|de+ ! A@rat<s [ AW d+0(y"),
a1

a

which is arbitrarily small for # sufficiently large.
To obtain (5) from (4) let L(z) =log™™ ™ 'z and note that for
0< ¢g<1 it follows from

m+n+k < n+m\[(m+k+n
k+n+1) S \n+1 E



A THEOREM IN NUMBER THEORY 181

that
a-om = BT ZEIT)e
_ Z"w(m+k 1) "+0(qf’“ (m+k+n)q,,)
= S(MHET e ol a—g.
Therefore

v v
8) [ AWt *(log ™ aft)dt = log ™ f A(t)t72 (1 —logt/logz) ™dt

a)

- Zn: (m+k 1)(10g‘"‘ *z) f t=2 A (t) (log*t)dt +

k=0

+0 f t"A(t)(log"“t)(loga;/t)"""”“dt)

and

fv 72 A (1) (loght)dt = f 172 A (t)(logkt)dt — f 172 A (t)(log*t)dt

=D, +0(f t°~(log*t) dt) = D, +0(y* 'log*y),
where
Dy = [ 72 4(t)(logke) dt.

The O-term in (8) is O(log™™ " 'z) as in the proof that F(w) is
slowly oscillating. Thus

N(z) =Cx ZD,, (m+ k— 1) log=™ %z 40 (w 2 (log=™" a;)yc‘llog"g) +
k=0 F=0
+0(zlog™™"""'7) = Ca ZDI: (m +k— l)log"”"‘w + O(wlog™"""1g),
k=0

since y°~' = L(z) = log=™ ""!z. To evaluate D, observe that in view of

(9) F(s) = Z”a,,n"‘ = fm 2 dA (1)

al-o
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by partial integration we get

F(1) = ft- ot ft‘zA(t)dt = fot"A(t)dt = D,,

a;—0 a;—0
since
A(a,—0) =0, limA(x)/z =0,

=00

and F'(s) is absolutely convergent for Res > c.
Similarly, for ¥ > 1 we have

(—1)¥F%¥)(s3) = fu"‘(log"u)dA(u),

al—o
so that for s =1

(=1 F®(1)

= fu"(log"u)dA(u) =A(u)u"log"u|:_o— fA(u)d(u“log"u)
%)

a,—o0
= —k [ A(wu(log" 'u)du+ [ w4 (u)(log"u)du = —kD,_,+ D,
al al
which for ¥ > 1 gives
(10) D, = (—1)*F¥(1)+kD,_,.
Applications. 1. To see that Schwarz’s result (2) follows from (5),

let A be the sequence of integer squares, and B the sequence of pnmes,
so that

4@) = 1= 0(@), F(s) = Su-* = t(20)

nw=]

and, by the prime number theorem (see [8]),
x
B(z) = n(a) = [ (log™'t)dt+ O (wexp[—cd(2)]),
2
where ¢ > 0, 4(x) = log**z(loglogz)~'5.

Thus (a), (b), and (c) are seen to be satisfied, and (4) gives

(11) D 1=N@) =2 f [£'2]t-2(log ™'z [t)dt + O (wexp [ — ¢ 8(2)]),
pri<z
where

Y = exp [gé(w)]-
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Since exp[—cd(x)] = O(log~"z) for every N > 0, (¢’) is satisfied
with m = C = 1, and » arbitrary, Thus (2) follows from (5) and

¢ = F(1) = {(2), Cp = (—l)k[cws)]ﬁl"‘kck—l = (*Z)kdk)(2)+kck—1-

2. The previous example can be generalized to the problem of finding
the number of integers not greater than & which are a product of a prime p
of the form at+b ((a,d) = 1) and a number m = p1p32... p§i, where
a; = ¢ (modd) forj =1,2,...,4and ¢> 0, d > 3 (if ¢ = 0, then m is the
d-th power). For A we may take the sequence of m’s, and for B the sequence
of primes at-+b, so that A(x) = 0(2"“*¥), Thus (b) is obvious and,
by the prime number theorem for primes in arithmetic progressions
(see [8]), we have

B(2) = [p(a)]™ [ (log~*t)dt+ O (vexp[ —ed(2)]),

which implies (¢) with L(x) = exp[ —c¢d(x)] or (¢’) withm = 1,C = 1/p(a),
n > 0 arbitrary, and

Fe) = [ [a+peronqpems ) []
» p

1 __p—dt +p—(6+d)l
1—p %

Thus (4) and (5) give the asymptotic formula for N (x).

3. If we assume that the twin prime conjecture or, more generally,
the so-called Schinzel H-hypothesis is true (see [4], p. 1-5, and [5]), we
may solve problems such as: how many integers not greater than x are
products of the d-th power (or an integer m of the type considered in the
previous example) and a prime p such that p’ = p+2 is also a prime
(p’" = p+6 is also a prime ete.), or a prime p such that p2+1 is a prime,
etc.? In the twin prime case a conjectured formula would be

(12) B(z) = 2 1 =2 ”(1—(p—1)")f(log‘2t)dt+O(wlog"w).

P<z,p+2=p’ p>2

(a), (b), and (c¢’) are easily checked so that (5) holds with

m=2, n=0, e=1d<1/2, ¢=2[]1-(p-1)?,

p>2
F(3) = {(ds), D, =10(d), D,=(—2ayft®(d)+kD,_, for k>1.

4. Finally, let N (x) denote the number of integers not greater than =
of the form n = ab, a = p* if p # Il (modm) (or, more generally, one
could take a = pf1p32 ... pf, a,> 2 and p, # ! (modm) fort =1,2, ..., 1),
b = ¢’ ... g%, where m > 2, ¢, =1 (modm) for v =1,2,...,s and
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q1y 92y +-+y ¢ Primes. If A is the set of all a’s (arranged so that elements
are increasing) and B the set of b’s, then A4 () = O (2'*) and

B(x) = Crlog/*™—15 1 0 (xlog®™~2y)
= f (log!/"™=11)dt + O(wlog"?™~2g),
2

which may be obtained in the same way as the asymptotic formula for
integers representable by a sum of two squares was obtained by Postnikov
in [3], p. 379-393. Thus (c¢’) holds with m =1/p(m)—1, C depends on 1
and m, and (5) may be applied.
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