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THE THEORY OF TOURNAMENTS:
A MINIATURE MATHEMATICAL SYSTEM*

BY

FRANK HARARY (ANN ARBOR, MICHIGAN, U.S.A))

It is well known that an ariom system must have both primitives
(undefined terms) and postulates (axioms). There are many practical
situations which can be described by the same axiom system. Those
include:

1. A round robin tournament in which each player (or team) plays
a single game with every other, and exactly one player emerges victorious
in any game.

2. The establishment of pecking rights in a flock of hens, where
every pair of hens have a go at it and from then on any two hens know
which of them does the pecking and which is pecked.

3. A consumer preference relation where say a lady wants to choose
just one of five men and makes a choice between every pair of men
before reaching a final decision.

4. A task precedence relation wherein several tasks must be accom-
plished in order to do a complete job and the boss must decide for every
pair of tasks which must or should be done first. This situation is called
an “assembly schedule” by Foulkes [2].

THE AXIOM SYSTEM

Primitives:

(i) A non-empty set V of p “points”, v,, v, ..., Vp.

(ii) A relation R on the set V, i.e., R is a subset of the cartesian
product Vx V.

* This lecture was first given at the Statistics Department of the University
of Paris (the Sorbonne) on May 15, 1963. It was most recently given, again in
French, on June 15, 1964, at the Department of Mathematics of the Jagellonian
University in Krakéw, Poland, during its 600 th anniversary year.
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Postulates:

P1. R is irreflexive
P2. R is asymmetric
P3. R is complete.

A tournament is a model of this axiom system. One can draw
a tournament by writing its points as points in the plane and joining
a point % to a point v, by a (directed) line w» whenever (u, v)eR. In these
terms the meanings of the postulates are as follows:

P1 asserts that there are no “loops”, i. e., lines which join a point
to itself.

P2 says that there are no symmetric pairs of lines, i. e., not both
(%, v) and (v, w) can occur.

P3 stipulates that for any two distinet points % and v, at least
one of the ordered pairs (u,v) and (v,u) does occur. Hence by P2
and P3 exactly one of the lines wv and v occurs in a tournament.
In Fig.1 are shown all tournaments with p =1,2,3, and 4 points.
Incidentally the number of tournaments with 5 points is not
a power of 2.
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Fig. 1

A digraph (directed graph) is a model which satisfies the first
postulate. A complete digraph satisfies P1 and P3. The outdegree of
a point v, written od v, is the number of lines from v; the indegree id v
is the number of lines to v.

It follows directly from the definitions that if » is any point in
a tournament 7' with p points, then od v+ idv = p—1. Also, the total
number of lines in 7' is p(p—1)/2. In the tournament of a round robin
competition, the outdegree of a point is the number of victories won
by that player. For this reason, we shall call the outdegree of a point v;,
of a tournament its score, denoted s;.
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Rather than give precise definitions, we show in Fig. 2 a (directed)
path from « to v and a (directed) cycle. The points are distinet in both
a path and a cycle.

A complete path or a complete cycle contains all the points of the
tournament. Note that this is not the same usage as the word “complete”
in postulate P3, but the meaning will be clear by context. Theorem 1,
the first theorem ever found about tournaments, is due to Rédei [8].
It also holds for any complete digraph as observed by Koénig [6]. Its
proof is given, but for the later theorems at most a hint of the proof
will be indicated. The proof of the other theorems in this article may
be found in the review article on tournaments by Harary and .Moser [3]
or in Chapter 11 of the book on digraphs by Harary, Norman, and
Cartwright [4].

N

THEOREM 1. Every tournament has a complete path.

The proof is given by induction on the number p of points. Referring
to Fig.1, we see that every tournament with 1, 2,3, or 4 points has
a complete path. As the inductive hypothesis, let the theorem hold for
all tournaments with n points. Let 7 by any tournament with n+1
points. To complete the proof of the theorem, it is necessary to show
that T has a complete path.

Let v, be any point of T. Then T — v, is a tournament with » points.
Since the inductive hypothesis applies to T —v,, it has a complete path
which may be denoted by P = v,9,9;...7,. Let us return to T' and see
how the point v, can be added to P in order to obtain a complete path
of T. Consider the two points v, and v, of 7. By postulates P2 and P3,
there are two possibilities: either line v,v, or v,v, is in T. If v,v, is a line
of T, then v,v,v,7,...7, i8 a complete path of 7. On the other hand, if
9,9, is in T, then let v; be the first point of P, if any, for which the line
vo®; i§ in T. Then necessarily line v;_,v, is in 7. Therefore v,v,...9;_;X
X Vg0;...0, i8 a complete path of T (as shown in Fig. 3). But there may
not be any such first point v;, since v, might be a receiver of T. In that
case, vyVy0;...0,0, i8 a complete path of 7, completing the proof.

Rédei also showed that every tournament has an odd number of
complete paths but no simple proof is known.

A tournament is called strongly comnected, or more briefly strong,
fi for any two points 4 and v, there is a path from « to » and hence a path

Fig. 2



152 F. HARARY

from v to w. The next result, proved by Camion [1], gives a criterion
analogous to Theorem 1 for a tournament to be strong.

THEOREM 2. A tournament is strong if and only if it has a complete
cycle.

The following false proof of Theorem 2 actually appeared in the
literature. It is left to the reader to find the error in the proof.

Vi1

Fig. 3

False proof. Of course every tournament with a complete cycle is
strong. To prove the converse by induction, first note that the smallest
strong tournament has 3 points and is itself a cyclic triple. Note also
from Fig.1 that there is only one strong tournament with 4 points and
it has a complete cycle. Now assume that the theorem is true for every
strong tournament with ¥ points and let 7' be one with k41 points. By
the inductive hypothesis, there is a point % in T such that 7'— « is a strong

o

Vk-1
Fig. 4

tournament with % points and hence has a complete cycle v,v,v;...
eesVk_10x0;. A8 shown in Fig. 4, draw point % inside this cycle and
construct a complete cycle of 7' by the following argument which closely
resembles the proof of Theorem 1. Either line v or line wv is in T by
Postulates P2 and P3. Assume vu is in 7. Let v; be the first point such
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that wo; is a line of T'; then v;_, % is in 7. Hence v,0,03...0;_; u0;...0;0,
is a complete cycle in T.

We were able to supply a correct proof of Theorem 2 by proving
the following more general theorem:

If a tournament is strong, then it contains a cycle of each length
k=3,4,...,p.

The next theorem was actually discovered by biologists who were
studying pecking orders in a flock of hens. They found that in practice,
the pecking order is not always a transitive tournament, but that cyeclic
triples may be stable. They also found that in any flock of hens, there
is always at least one hen who either pecks every other hen directly, or
if not then she pecks a hen who pecks the other hen.

THEOREM 3. In any tournament, the distance from a point with maxi-
mum score to any other point is 1 or 2.

We omit the proof, which uses an argument by contradiction and
constitutes an exercise for the reader.

In the theory of relations, see for example Tarski [9], the principle
of directional duality asserts that when every concept in a theorem is
replaced by its converse concept, the resulting statement is again
a theorem. The dual to Theorem 3 so obtained is as follows:

THEOREM 3'. In any tournament, the distance to a point with minimum
score from any other point is 1 or 2.

A tournament is fransitive if it has no cyclic triples (and hence no
cycles at all). In books on the foundations of mathematics, e.g.
Wilder [10], a complete order (or simple order) is defined axiomatically
and coincides with a transitive tournament (except perhaps for the
reflexivity postulate, P1). If a judge in a preference relation is consistent,
there will be no cyclic triples in his paired comparison choices. Hence
the number of cyclic triples in a tournament may be regarded as a measure
of inconsistency. For this reason, Kendall and Babington Smith [5]
derives the following result which tells the greatest possible number of
inconsistent outcomes among triples of choices.

THEOREM 4. Among all the tournaments with p points, the maximum
number of cyclic triples is

24

pi—4p
24

S __
Ip P if p s odd,
cmax(p) =

if p is even.

There are many proofs that can be given for this result. One of the
simplest uses the formula for the number of transitive triples in a given
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tournament 7 stated in Theorem b5, subtracts this number from (1;),

the total number of triples, to obtain the number of cyclic triples, and
then applies difference calculus routinely.

THEOREM 5. The number of transitive triples in a tournament T whose
p
points have scores s; is D 8;(s;—1)/2.
i1
The score sequence of a tournament T is the ordered sequence of

integers (8,, 85, ...58,). The following theorem by Landau [7] gives
a necessary and sufficient condition for a sequence of nonnegative
integers to be the scores of some tournament.

THEOREM 6. A sequence of mnon-negative imtegers 8, < 8, < ... < 8
i8 a score sequence if and only if their sum satisfies the equation

D
(1) D's=p(p-1)2,
i=1

and for every positive integer k < p
k

(IT) D'si > k(k—1)/2.
i=1

The proof of necessity of (I) and (II) is straightforward. The proof
of sufficiency takes a bit longer. There is an analogous result that
characterizes the score sequence of a strong tournament. It is obtained
from Theorem 6 or replacing the > inequalities of conditions (II) by
strict inequalities.

THEOREM 7. Let T be a tournament with score sequence 8, < 85 < ...
< 8p. Then T is strong if and only if their sum satisfies the equation

89 Qs =p(-1)2,

and for every positive integer k < p

k
(IT) D8 > k(k—1)/2.
i=1

Many other theorems may be derived from these three simple
axioms for a tournament, and several difficult unsolved problems remain
open.
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