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THE CONVOLUTION EQUATION OF CHOQUET AND DENY
FOR PROBABILITY MEASURES
ON DISCRETE SEMIGROUPS

BY
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In this note we consider the convolution equation uA = u for prob-
ability measures x and A on a discrete semigroup 8. It is known that if 8
is a locally compact topological group, then A satisfies this equation if
and only if u(As™!) = u(4) for every s in the support of 1 and every
Borel subset A of S (see Tortrat [11]; the abelian case was considered by
Choquet and Deny in [2]; see also [4]). The aim of the present note is to
characterize discrete semigroups for which such a theorem remains true.
This is done in Corollary 2. We note that some partial results concerning
this problem were obtained in [12], [7], [6], and [1]. The study of the
convolution equation ui = u is of some importance in developing the
probability theory on semigroups (see [8] and [1]).

For the sake of convenience we shall formulate our results on op-
erands rather than on semigroups.

Let S be a semigroup. By an operand Xy over S we mean a set X
together with a mapping (#,8) > 28 of X X8 into X satisfying x(st)
= (x8)t for all x € X and s,? € 8. In this paper we use the notation and
terminology of [3], Chapter 11. Moreover, given an operand Xg over §
and subsets A, Bc X and T < S we put

AT = \J{nt | veAd,teT}, A7'B={sec8 | A{s}nB #9},
AT ={zeX | An{a}T #0}.

If A = {a}, B = {b} or T = {t}, we shall also write aT, a~'b, At7",
etc. By [T] we denote the subsemigroup of 8 generated by T.

By a probability measure u on X we mean a countably additive non-
negative set function defined on 2% which is regular and the measure of the
whole space equals 1 ([56], Section 1). By C(x) = {a: eX | u({r}) > 0}
we denote the support of u. The set of all probability measures on X
is denoted by Z£x. The probability measure concentrated at v € X is
denoted by 4,.
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By #5 we denote the semigroup of all probability measures on S
with the convolution operation (see [5], Section 3). For u € 25 and 4 € #4
the convolution x4 of x4 and 1 is defined by the formula

pr(A) = (uxA){(x,8) e X x 8 | vs € A}
= D u(4s™a{s}) = D) p({a}) @' 4)
reX

seS

for an arbitrary A < X.

Let X4 be an operand over S. A subset N < X is called tnvariant if
NS = N. An operand Xgis called transitive if 28 = X for every z € X.
Clearly, X is transitive if and only if X contains no proper invariant sub-
set. We say that Xg is completely reducible if it is decomposable into tran-
sitive suboperands (see [3], p. 257).

LeMMA 1. Let Xg be an operand over S8 and let ue Px and A€ Py
satisfy puA = pu, C(p) = X, and [C(A)] = 8. Then Xy is completely re-
ducible.

Proof. Let N be an arbitrary invariant subset of X. Then N < Ns™!
for every s € 8. Since uA" = u (4" is the n-fold convolution of 4 with it-
self), we have

3 (p(Es™) — u(@) 2 ({s}) = 0

seS

for n =1,2,... Hence Ns~' = N for every s € S.
Thus we have shown that each invariant subset N of X satisfies
N = Ns~! for all 8 € 8. It is easy to see that this property of Xg is equi-
valent to the assertion of the lemma (cf. [3], Theorem 6.36, (B) and (D)).
LEMMA 2. Let Xy be a tramsitive operand over S and let u € Px and
e Py satisfy uh = p, C(u) = X, and [C(A)] = 8. Then

1y i1
lim — 21 (27 4) = u(4)
for every A = X and every x € X.

Proof. By our assumptions, P(z, A) = A(#~'4) is a transition prob-
ability function with invariant measure u. Our lemma will follow by the
ergodic theorem (see [9], Chapter IV, Corollary 2) if we prove that
for every A < X satisfying P(z, A) =1,(x) for all e X we have
4 =0 or X. .

Assume that

Aa7 4) = D1, 1 (@)A({8}) =14 ()
seS
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for every « € X. Multiplying this equation by 1 . we obtain
D11, 1 (@)A({8}) =0

geS

for every z € X. Hence 1,1, _, =0, i.e. 4s7' < A for every s e ((4).
Since [C(4)] = 8 and X4 is transitive, we obtain A =@ or X, which
completes the proof.

An operand Xg is called camcellative if for all , y € X and 8 € 8 such
that rs = y8 we have z = y.

A subset H of a semigroup 8 is called left [right] unitary if H'H < H
[(HH™! = H], and wunitary if it is both left and right unitary. A sub-
set H of § is called strong if, for every s,te 8, Hs"'nHt™' # @ implies
Hs™! = Ht™\.

Assume that Xy is an operand over S. For each x € X the set
H, = {s€8 | 8 =} is called a stabilizer. It is known that every sta-
bilizer is a left unitary subsemigroup of 8. Moreover, if the operand Xg
is cancellative, then every stabilizer is a unitary strong subsemigroup
of 8 (see [10], Section 2, Theorems 2 and 3, Proposition 1).

The main result of this paper is the following

THEOREM. Let Xg be an operamd over a semigroup S and let u e Py
and A € Pgy satisfy ud = u, C(u) = X, and [C(1)] = 8. Then the following
statements are equivalent:

(i) ud, = u for every s e 8;

(i) Xg 28 cancellative;

(ili) for every x € X the stabilizer H, 18 a unitary subsemigroup of 8.

Proof. The implications (i) = (ii) = (iii) are obvious. Now, assume that
uA =pu, C(p) = X, [C(1)] = 8, and that (iii) holds. From Lemma 1 we
infer that X is completely reducible. Next, it follows from (iii) and [13],
Lemma 1.1, that Xg is cancellative.

Now, without loss of generality we may assume that Xy is transitive
and cancellative. Fix an arbitrary z € X and let

Ru, = {(s,)eSx8 | s7'H, =t7"H,}

be the Dubreil principal right congruence determined by H, (see [3],
p. 183). By [3], Exercise 1 in Section 11.4, the set H, is strong and
Xg =2 8/Rg,. We prove now that X is fmlte, i.e. card(8/%#y,) < oo.

By [3], Lemma 10.11, the equivalence classes of Ry, are the non-
empty members of {H, s~ | s € 8}U {Wy }, where Wy_— {seS | s~ H, =0}
is the right residue of H,. Ana,logously, the eqmvalence classes of the
Dubreil’s principal left congruence

g ={6,t)e8x8 | Hyis™! = H,t™"}
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determmed by H, are the nonempty members of {8~ H, | s € 8} {7, W},
where 5 W = {se 8 | H,s~' =@} is the left residue of H,. Observe ‘that
card (S /.%Hz) < oo if and only if card (S /Hz.Q) < oo. Thus we have to prove
that card(8/g %) < oo.

Suppose to the contrary that card(S/ g, %) = coand let % be a natural
number such that

(1) p({x}) > 1/k.

There exist $,, 8, ..., 8, € 8 such that the sets s;' H,,, s; ' H,, ..., 8; 'H,
are pairwise disjoint. Since
LY

is a probability measure on 8, we have

(2) 21 (s,-lH)_z(U 'H,) < 4,(8) =1.

=1

On the other hand, applying Lemma 2 we obtain

(3) lim 4, (5" H,) = lim 4, (as) ™ (@@})) = p({a})

for j =1,2,..., %k Thus (1) and (3) imply
k
(4) im D>'4,(s5" H,) = ku(fa}) > 1.
n—>c0 ;)

Inequalities (2) and (4) give a contradiction.

Thus the set X is finite and the operand X is transitive and cancel-
lative. Clearly, the normalized uniform distribution » on X satisfies »4, = »
for all s € 8, and vA = ». Using Lemma 2 we obtain » = u, which gives (i)
and completes the proof.

COROLLARY 1. Let X4 be an operand over a semigroup S. Then the fol-
lowing statements are equivalent:

(i) for every u € Px and every A € Pg such that ui = p we have ud, = u
for all 8 € C(2);

(ii) for every x € X the stabilizer H, i8 a unitary subsemigroup of 8.

Proof. If ud = u, then C(u)[C(4)] = C(u). Thus the implication
(ii) = (i) follows from the Theorem. Conversely, assume that (ii) does not
hold. Thus there exist x € X and s, ¢t e 8 such that xst = 2, ot = #, and
w8 #x. Put y =axs and u =is. Then ot =yt =@, 2u =yu =y, & #* Y,
and t #u. Set y = (6,+6,)/2 and A = (6,4 6,)/2. Then ui = u and
ud, = 8, # u, i.e. (i) does not hold.
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Applying Corollary 1 to the operand Sy we obtain

COROLLARY 2. Let S be a semigroup. Then the following statements are
equivalent:

(1) for every u, A€ Py such that ud = u we have ud, = u for all
seC(A);

(ii) for every a, b, ¢ € 8 such that abc = a and ac = a we have ab = a.

A further discussion concerning the condition (ii) in Corollaries 1
and 2 can be found in [13]. Observe also that a semigroup S has the prop-
erty that for every operand Xg over S one of the equivalent conditions
in Corollary 1 holds if and only if 8 is a J-semigroup (see [13]).

The next corollary, which can be easily deduced from the Theorem,
shows that condition (ii) in Corollary 1 can be extended to measures,

COROLLARY 3. Let Xy be an operand over a semigroup S such that for
every © € X the stabilizer H, is a unitary subsemigroup of S. Then for every
p € Px the stabilizer H, = {A€ Py | ph = p} is a unitary (and strong)
subsemigroup of Pg.
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