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REMARKS ON PRODUCTS OF o-IDEALS
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. MAREK BALCERZAK (LOD2)

1. Recall that an ideal .# of a Boolean algebra .« is called x-saturated,
where x is an infinite cardinal, if, whenever A — &/\ 4 has cardinality x,
there are distinct a, beA such that anb¢ S (for the notions concerning
Boolean algebras, see [19] and [5], pp. 7-16). If .¥ is a o-ideal in a Dedekind
g-complete Boolean algebra, it will be w,-saturated if and only if there is no
uncountable_disjoint set 4 < £\ S (cf. [5], 12 D(d), p. 10). We shall only
consider the above case; namely, &/ will always be equal to the o-field 4 (X)
of Borel subsets of a fixed topological space X. We shall say that a o-ideal
J < 2(X) (P(X) denotes the power set of X) fulfils the countable chain
condition (abbr. ccc) if ¥ N A (X) is w,-saturated (in #(X)) which (by the
above) means that there is no uncountable family & < #(X)\ # of disjoint
sets. Moreover, we assume that g-ideals S < 2(X) are proper (ie., X ¢ )
and they contain all singletons {x}, xeX.

As simple exercises we get

1.1. ProposiTiON. If .# and ¢ are o-ideals in P (X) such that S < ¢ and
S fulfils ccc, then ¥ fulfils it.

1.2. PROPOSITION. Let .9 and g be c-ideals in #(X). Then .$ N ¢ fulfils
ccc if and only if both .$ and ¢ fulfil it. ‘ '
For a og-ideal f < 2(X), put
#°={A: A cB for some Be#(X)n.#}.

Then #° forms a a-ideal and, by the definition, .#° fulfils ccc if and only if .#
fulfils it. We call ¥ .a Borel o-ideal if ¥ = $°.

The family of meager sets (i.c., those of the first category) and the family
of sets having Lebesgue measure zero are well-known Borel g-ideals fulfilling
ccc on the real line. The family of linear g-porous sets [20] and the s-ideals
defined by Mycielski [15] in the Cantor set are Borel and do not fulfil ccc.

In the paper we are interested in the so-called products of g-ideals. Now,
we shall describe these notions.
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Let X and Y be fixed topological spaces. In the sequel, # and # will
always denote o-ideals in 2#(X) and 2(Y), respectively. We define

V(S H={EcXxY: (xeX: E ¢ #}es},
H(S, f={EcXxY: {yeY: B¢ S}e s}

These are o-ideals In #(X xY) called products of # and # (cf. [1], [7],
[14]).

Throughout the paper, ) denotes the family of all meager subsets of
the space which is considered at the given moment; if necessary, we use
indices, e.g., X'y, Xy.

The results on H(#, #) will be omitted since they are analogous to
those on V(f4, #).

2. In this section we shall prove and discuss the following theorem:

2.1. TueoreM. If V(S#, #) fulfils ccc, then both S and ¢ fulfil it.

Proof. Suppose that # does not fulfil ccc. Then there is a family
{Ca: @ <w,} of pairwise disjoint sets from #(X)\.#. Thus, let us observe
that the family {C,xY: a <w,} consists of pairwise disjoint sets from
B(X xY)\V(F, #). Similarly, if # does not fulfil ccc, we get a family
{D,: a <w,) of pairwise disjoint sets from #(Y)\_# and check that the family
{X xD,: a <w,} consists of pairwise disjoint sets from #(X x Y)\V(.#, #).

Now, our aim is to show that the converse to Theorem 2.1 need not
hold; however, the counterexamples given below require some additional set-
theoretic axioms. By CH we denote the Continuum Hypothesis, and by MA
and SH Martin’s Axiom and Suslin’s Hypothesis, respectively (cf. [10]).

Recall (cf. [2), p. 35) that a topological space is said to fulfil ccc (and
called a ccc space) if there is no uncountable family of nonempty pairwise
disjoint open sets.

It is easy to prove the following propositions:

2.2. PrOPOSITION. A Baire space X fulfils ccc if and only if X fulfils it.

2.3. ProrosiTiON. If X, Y are Baire spaces and X x Y does not fulfil ccc,
then V(X 'y, Xy) does not fulfil it.

Now, we quote two results concerning products of ccc spaces.

24. TueoreM (R. Laver and F. Galvin; see [6] and [2], Theorem

7.13). Assume CH. There is an extremally disconnected, compact Hausdorff ccc
space X such that X x X is not a ccc space.

2S. THeoreM (D. Kurepa; see [18], p. 15). Assume not-SH. There is a
compact, connected, hereditarily Lindeldf, first countable, perfectly normal,
hereditarily ccc space X such that X x X is not a ccc space.

We should add that, under MA + not-CH, any product of ccc spaces is a
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ccc space (see any of [2], [5], [10], [18]). Note also that MA + not-CH
implies SH and that both CH and not-SH are true under Gd&del’'s axiom V
= L (cf. [10)).

Since every compact space is a Cech-complete space and this last one is
a Baire space ([3], p. 253), Theorems 24, 2.5 and Propositions 2.2, 2.3 give
the following corollaries yielding the counterexamples announced above.

2.6. CoroLLARY. Assume. CH. There is an extremally disconnected, com-
pact Hausdorff space X such that X fulfils ccc and V (X', X) does not fulfil it.

2.7. CorOLLARY. Assume not-SH. There is a compact, connected, hered-
itarily Lindeldf, first countable, perfectly normal space X such that X~ fulfils
ccc and V (X', X) does not fulfil it.

3. While one studies ccc for V(#, #), the following property of # is
helpful (cf. (»x) in [7]): .

A o-ideal # = 2(X) is said to be X-regular if, for each Borel set B =
X x Y, the set {xeX: B,¢ ¢} is Borel in X.

Gavalec obtained a criterion ([7], Theorem 2.3) for fulfilling ccc by
V(#, #) (he considers ideals, not necessarily o-ideals) and required the X-
regularity of # (cf. Theorem 2.2 in [7]). In particular, he showed that
VX, &) fulfils ccc, where ¥, ¥ < 2 ([0, 1]) and & denotes the family of
all Lebesgue null sets. We shall extend this result by considering abstract
spaces and measures.

At first, X-regularity will be verified.

A family # of nonempty open subsets of Y is called a n-base (cf, eg.,
[5], p. 246) if each nonempty open set includes a member of #.

3.1. ProrosiTioN (see [21], Corollary 1.8 (b); cf. also [9], Theorem
2.1.2). If Y is a Baire space with a countable n-base, then X < P(Y) is X-
regular for every topological space X.

Further, let u be a fixed complete measure defined on a o-field
& < P(Y) containing all Borel subsets of Y and let u(Y) > 0. Denote by &
the family of all sets having measure u zero.
~ We say that u is t-additive if u((\F,) = inf u(F,) for each decreasingly
directed family {F,} of closed:sets (an equivalent condition can be formulated
for open sets; cf. [8] and [4], p. 275).

3.2. PROPOSITION. Assume that pu is o-finite.

(@) If X is first countable, then ¥ is X-regular.

(b) If u is t-additive, then ¥ is X-regular for every X.

Proof. It follows from [8] that if X is first countable or u is t-additive,
then u(G,), as a function of x €X, is lower semicontinuous for each open
set G in X x Y, so is Borel measurable. Thus, by using the o-finiteness of y, it
is not difficult to show that u(B,), as a function of x € X, is Borel measurable
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for each B'eQ(X x Y) (we assume first that u is finite and proceed by
induction over the hierarchy of Borel sets in X x Y; cf. the proof of Theorem
2.2 in [7], see also Theorem 2.1.1 in [9]).

Now, from the above propositions and Gavalec’s theorem we can derive
the following

3.3. CoroLLARY. Let X be a ccc Baire space with a countable n-base. Let
u be a o-finite complete measure on a o-field ¥ < #(Y) containing all Borel
subsets of Y, such that u(Y) > 0. Assume that either u is t-additive or Y is first
countable. Let

H<PX) and ¥ =IA: u(4)=0}.

Then V(A , ¥) and V(¥, K) fulfil ccc.

Proof. Observe that we may only consider the case where u is finite.
Let

u(Y)=a and £ ={AeB(Y): pA)<r},

where r runs over the set Q of all rationals from [0, a). Let {U,: neN} be a
fixed countable n-base of X (N denotes the set of positive integers). Put

A" ={AeB(X): U,ndeX}, neN.

Write L= {%": reQ}, K= {X™ neN!} and, in the same way as in [7],
Theorem 1.1, extend K to the system K. The Gavalec’s criterion ([7],
Theorem 2.3) applied to K, L gives the assertion (note that our assumptions

taken from Propositions 3.1 and 3.2 are essentially used in the proof; cf. [7],
Theorem 2.1).

3.4. ExampLE. We shall show that the situation when X has no count-
able n-base and V(X 'y, ) fulfils ccc is possible. Let X-be a ccc Baire space
which has no countable 7-base, e.g., the Cantor cube {0, 1}*! (cf. [3],
3.12.12(a), p. 292). Let Y be a Baire ccc space with a countable =n-base.
Applying the general version of the Kuratowski-Ulam theorem ((1.1) in
[16]), we get

V(fx, XY)Dfoy.

Observe that X x Y is a Baire space ([16], Theorem 2) fulfilling ccc’ ([5],
Corollary 12 J, p. 14); thus, by Proposition 2.2, X'x,y fulfils ccc and, by
Proposition 1.1, V(X'y, Xy) also fulfils it (in fact, we can prove that
V(X x, Hy)° = H'x«y by using the converse to the Kuratowski-Ulam the-
orem; see Theorem 154 in [17]).

Now, assume that ¥, ¥ < #(X), X =[O0, 1], where .# is the family of
Lebesgue null sets. Recall some observations of Mendez [14]. Let 4 € # and
B e ¥ be disjoint Borel sets such that AUB = X (cf. [17]). Then the sets
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A xX and B x X belong to V (X, ¥) and V (¥, X), respectively, and their
union gives X x X. Hence V (XX, .¥) and V (%, X) are not included in each
other. Let #'® and #? denote the g-ideals in (X x X) of all meager sets
and of all two-dimensional Lebesgue null sets, respectively. Then (4 x A)
U(B xB) belongs to V(X, #)nV(¥, KX), (AxB)u(B xA) belongs to
HD D and

(%) (AxA) uBxB)u((AxB)U(BxA)=XxX.

Thus, neither V(X', ¥) nor V (¥, X) can be included in any o-ideals 2,
#? and all converse inclusions are also impossible. Hence, in this case, ccc
for V(, ¥), V(¥, X) cannot be deduced from ccc for .#®, ¥ by using
Proposition 1.1.

Observe that the set (A xA) U (B x B) in the decomposition (x) belongs,
in fact, to the o-ideal

Fi={EcXxX: Ec(CxC)u(D xD) for some CeX,De¥.
Clearly, #, < #,, where
I, =V, L°V(L, A)"H(A, )°NH(ZL, X)°

(note that, by [14], Theorem 1.3, V(.#, %) and the remaining three products
are not Borel g-ideals). By Gavalec’s result and Proposition 1.2, the o-ideal
#, fulfils ccc. The following question arises:

35. PRpBLEM (P 1356). Does S, = #,? If not; does #, fulfil ccc?

Finally, observe that it is possible to extend the above considerations to
more general settings (cf. [13]).

4. We shall say that a c-ideal S < 2(X) fulfils the strong countable
chain condition (abbr. sccc) if, for each family {D,: « <w,} of sets from
2(X)\ #, there is an uncountable’ Tc{a: « <w,} such that (D, is

aeT

nonempty. Obvnously, if .# fulfils sccc, then it fulfils ccc; note that sccc is an
analogue to the possessing of caliber w, defined as in [2], p. 22 (conditions
of that kind are discussed in [11] in the aspect of various set-theoretic
axioms). Observe that Propositions 1.1 and 1.2 remain true with ccc replaced
by sccc.

In this section we study connections between the fulfilment of sccc by .7,
F and V(4, 9).
, 41. Tueorem. If V (4, ¢) fulfils sccc, then both .# and ¢ fulfil it.
The proof is analogous to that of Theorem 2.1.

4.2. THEOREM. If
(a) both .¢ and ¢ fulfil sccc,
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(b) # is X-regular,
then V(S#, #) fulfils sccc.

Proof. Let us consider an arbitrary family {D,: « <w,} of sets from
B(X xY)\V(SF, #). Let

D,={xeX: (B),¢F}, a<w;.

By (b), the sets D, are Borel in X. Since B, ¢ V(#, #), we have D, ¢ #. So, by
(a), there is an uncountable T c {a: « < ®,} such that (\ D, is nonempty.

aeT
Let

X0 € () D,-
aeT

The sets (B,),,, 2 €T, belong to #(Y)\ #; thus, by (a), there is an uncount-
able T" = T such that () (B,),, is nonempty. Hence () B, is nonempty,

aeT’ aeT’

which yields the assertion.
In a similar way we get

4.3. THEOREM. If
(a) F fulfils sccc,
(b) # fulfils ccc,
(c) # is X-regular,
then V (£, #) fulfils ccc.
We shall discuss applications to category and measure.

44. ProrosiTION. Assume MA +not-CH. If X is a Baire space with a
countable n-base and if {D,: a < w,} = #(X) is a family of nonmeager sets
with the Baire property, then there is an uncountable T < {a: a < ®,} such
that (\ D, is nonmeager with the Baire property.

aeT

Proof. Let {U,} denote a fixed countable n-base of X. Since the sets D,
are nonmeager with the Baire property, it follows easily that for each D,
there is U; such that U;\D, is meager. For each a < w, let k() be the first
index j with the above property. Then

{a: @ <y, k(@) =n}.
1

s

la: a <w,} =
n

Hence there exists a number n, such that the set
' {a: a <oy, k(@) = ny},

denoted by T, is uncountable. It follows from MA + not-CH that a union of
fewer than w, sets with the Baire property again has the Baire property (cf.
[5], Corollary 22 C, p. 46). Thus we conclude that () D, has the Baire

aeT
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property and () (U, \D,) is meager, ie, U, \ () D, is meager. Since X is a
aeT aeT
Baire space, () D, is nonmeager.

aeT

4.5. CorOLLARY. Assume MA +not-CH. If X is a Baire space with a
countable m-base, then X fulfils sccc. '

In the sequel, general assumptions on u and % will be the same as those
preceding Proposition 3.2. Let L' denote the space of equivalence classes of
u-integrable functions on Y. For the definition of a quasi-Radon measure, we
refer the reader to [4], Section 72 (cf. also [5], p. 275); note that a quasi-
Radon measure is t-additive.

4.6. ProrosiTiON. Assume MA +not-CH. If u is a quasi-Radon measure
with separable L'-space and

{D,: a <w,} = 2(Y)

is a family of measurable sets with positive measure, then there is an uncount-
able T c la: a <w,) such that (\ D, is measurable and

aeT

u( ﬂT D,) > 0.

This follows immediately from Exercise 32 P(h), p. 136, in [5]. A
complete, locally finite Borel measuré on any analytic space is an important
example of a quasi-Radon measure with separable L'-space (cf. [5], p. 128).
Thus, in particular, Lebesgue measure on the real line can be considered here

(cf. [10], Exercise 27, p. 89).

4.7. CorOLLARY. Assume MA +not-CH. If u is a quasi-Radon measure
with separable L-space, then ¥ fulfils sccc.

By combining Propositions 3.1, 3.2, Corollaries 4.5, 4.7 and Theorem
4.2, we get

4.8. CoroLLARY. Assume MA +not-CH. Let X be a Baire space with a
countable n-base and let X < P(X). Let u be a o-finite quasi-Radon measure
on Y such that L' is separable and let

£ ={A: p(4) =0).

Then both V(X, &) and V (¥, X) fulfil sccc.

In Propositions 44 and 4.6, it is enough to assume (in Fremlin’s
notation) the conditions p > w, and my > w,, respectively, which are conse-
quences of MA +not-CH (cf. [S], Corollary 22 C, p. 46; Exercise 32 P(h), p.
136, and comments on pp. 1-7). We do not know interesting applications of
Theorem 4.3; we can obviously deduce statements similar to Corollary 3.3,
however, we then assume MA +not-CH to get sccc in Theorem 4.3 (a).

Finally, we shall show some negative results on sccc.
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4.9. ProrosiTION. Let X be a T,-space of cardinality w,. There is no o-
‘ideal in #(X) which fulfils sccc.

Proof. Consider any o-ideal .# = 2(X). Let X ={x,: @« <w,} and put
A, =1{x,0 y>a}  for a <w;.
Then A,€%(X)\.¢ for all « < w,, and
N A4, =

aeT

for each uncountable T c {a: a <,;}. Thus # does not fulfil sccc.
Since each uncountable analytic space has cardinality continuum (cf.
[12], p. 387), we obtain

4.10. CoroLLARY. Assume CH. In any uncountable analytic space, there is
no o-ideal fulfilling sccc.
From Corollaries 4.5, 4.7, 4.10 we deduce

4.11. CoroOLLARY. It is independent of ZFC that there exists a o-ideal
Sulfilling sccc on the real line.
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